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Information

By WILLY LEY

THE 7-CORNERED POLYGON

HAVE yet to compare notes
I with other columnists, but

from my own experience it
seems that long letters can often
be answered completely with a
sentence or two, while short
queries might require a book. Of
course, every science editor is
plagued by letters of the type
which ask, “Please explain the
Theory of Relativity”—only eight
years ago an institute received
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the perfectly serious request from
a lady to “please scnd me what
has been published about avia-
tion”"—but that is not the kind
I have in mind. I am thinking
of a short letter that came in
some time ago and which con-
sisted of precisely three sentences.

In the first sentence, the corre-
spondent explained that his hobby
was the making of scale models
and that a classical chariot was
the current project. In the sec-
ond sentence, he said that the
picture he owned showed seven-
spoked wheels and could I tell
him how to construct one. The
third sentence thanked me for
whatever help I could give.

This was easy. I made a sketch
and said that this would do for
his purpose, even though the con-
struction was incorrect mathe-
matically. Back came the reply
that it had worked beautifully,
but why did I say that this con-
struction was incorrect? He had
tried it several times and had
come to the conclusion that the
“in” in front of “‘correct” had
slipped in by mistake. But if it
hadn’t, why was it incorrect?

Well, the answer is this column,
for the simple question requires
a treatise on the division of the
circle.

ET’'S begin with fundamen-
tals. Using a protractor for
dividing a circle isn’t permitted—

FOR YOUR INFORMATION

in geometry, that is. You can use
a protractor if you want to cut
up a pie or to make a wheel
with a silly number of spokes;
in short, for practical purposes.
But in geometry you can use
only two instruments, a pair of
compasses and a straight edge.
Furthermore, the straight edge
must be used only for connecting
points, not for measuring dis-
tances.

This strict rule has a good rea-
son, even though beginners often
have trouble understanding it.
Ideally, you do all this in your
head, drawing lines in the air
with your finger; the lines on
paper are merely a means of re-
membering (and communicating)
what you have found by think-
ing. The straight lines just show
which point is supposed to be con-
nected with which other point.
The circles “measure” since every
point along the periphery of a
circle has the same distance from
its center.

A protractor and other mechan-
ical devices are “forbidden”
because they will furnish infor-
mation which did not exist in your
head first. You are not supposed
to read off an angle of 30°; you
are supposed to find it by reason-
ing.

For example: the sum of the
three angles of a triangle is 180°;
hence, each angle in an equilateral
triangle must be 60°, and 30°
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is half of such an angle. Or: a
right angle is 90°; if I construct
an equilateral triangle in a right
angle, the difference between the
right angle and the triangle
must be 30°.

Now let’s go on with the prob-
lem. Fig. 1 shows the ordinary
hexagon, constructed, in this case,
by first halving the circle by
means of a straight line going
through its center, and then us-
ing the compasses with the same
opening that was used to draw
the original circle from both ends
of the diameter, points 2 and 5 in
the diagram. Or you can do it
without drawing a diameter first,
by simply starting at any one
point of the periphery with the
compasses and going around. By
halving the angles, you obtain the
points for the 12-cornered poly-
gon. In the diagram, the usual
method of halving was not used,
since in this construction you can
halve one of the 60° angles—the
one formed by points 1 and 6
with the center of the circle—by
erecting a vertical line on the
diameter.

By jumping every second point
of the hexagon, you obtain an
equilateral triangle, and by do-
ing this twice in succession, you
obtain the figure shown in Fig. 2,
the Star of David (which pro-
duces a hexagon in its center).
Another way of arriving at the
12-cornered polygon is shown in
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Fig. 1

Fig. 3. Instead of starting with a
hexagon and halving every angle,
you begin with two diameters of
the circle forming right angles at
the center. Then you use the com-
passes with the same opening used
for the original circle from these
four points (Nos. 3, 6, 9 and 12
in the diagram) in the manner
shown in the right half of the

diagram.
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Fig. 2
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The result is a figure some-
times called the Lilac Blossom
(indicated at points A and B)
and also the 12-cornered polygon.

HERE is still another way of

constructing an equilateral
triangle in a circle. This consists
of drawing a radius of the circle,
halving the radius and erecting
a vertical line on the halfway
point. The distance from the half-
way point to the periphery of
the circle is one-half of the side
of the equilateral triangle, in-
dicated by the points A, 2 and B
in Fig. 4.

But it so happens that this half
side is very nearly the side of a
7-cornered polygon. The differ-
ence is quite small, amounting to
17/10,000th of the radius of the
circle; if you have a circle with
a radius of 40 inches, the differ-
ence is just about 3/32nd of an
inch, Such an approximation is
good enough for seven-spoked
wheels, model or full scale, but
it is only an approximation. To
construct the true side of the 7-
cornered polygon with compasses
and straight edge is impossible.
The same holds true for the 9-
cornered, ll-cornered and 13-
cornered polygon, to mention
only a few cases.

Don’t waste your time trying.
You probably will find approxi-
mations galore, but no true con-
struction.

FOR YOUR

INFORMATION

In fact, there are only g few
series which can be properly con-
structed. So far I have dealt with
the one which I think of as the
“hexagon series,” which produces,
beyond the hexagon, polygons
with 12, 24, 48, 96, etc., corners.
Another may be called the
“square series,” which is based on
the square derived from two di-
ameters at right angles to each




other (Fig. 5) and leads to poly-
gons with 8, 16, 32, 64, etc.,
corners.

Another one is the “pentagon
series” (Fig. 6 and 7) which, in-
terestingly enough, does not real-
ly begin with the pentagon but
with a 10-cornered polygon The
method is shown in Fig. 6. When
you draw a smaller circle inside
the first circle, the diameter of
the small circle is equal to the

pentagon in its center (Fig. 7).
The “pentagon series,” of course,
leads to polygons with 20, 40, 80,
160, etc., corners.

Since a full circle has 360°, the
angle required for a 15-cornered
polygon is 24° and that can be
constructed in an interesting man-
ner. The angle of the equilateral
triangle is 60°. The angle of the
10-cornered polygon is 36°. And
60 minus 36 = 24. The actual
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radius of the large circle. Then
you connect the center of the
small circle to the point marked
“3"” in Fig. 6. The distance from
point 3 to the periphery of the
small circle is the side of the 10-
cornered polygon. By jumping
over every second point of the
10-cornered polygon, you obtain
the pentagon, and by jumping
every second point in the penta-
gon, you obtain the “magic”
five-pointed star with a smaller
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construction is shown in Fig. 8.
This naturally leads to polygons
with 30, 60, 120, etc., corners by
simple halving of the angles.
For more than twenty cen-
turies, these remained the only
polygons that could be con-
structed, even though people
through all these centuries kept
looking for more. They were espe-
cially interested in the 7-cornered
polygon because seven is sup-
posedly a magic and holy num-
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ber. They also devoted much
effort to the 9-cornered polygon,
but for no special reason than
that it just seemed to be simple.

Nobody, to my knowledge, ever
wondered whether the possible
and impossible constructions
might both be covered by some
law which one may discover.

T was in 1796—we even know

the date: March 30th—when
a 19-year-old student discovered
that law. His baptismal name was
Johann Friederich Carl Gauss,
but later he signed his work Carl
Friedrich Gauss.

One of the consequences of the
discovery was that it was pos-
sible to construct a 17-cornered
polygon. It is not as simple a
job as the ones discussed. In fact,
the explanation would take up
as much room as I have for my
whole column, so that I can only
say here where it may be found:
in F. Klein’s Famous Problems
of Elementary Geometry (Haf-
ner, New York, 1950). The 17-
cornered polygon naturally leads
to polygons with 34, 68, 136, etc.,
sides, and by using a method
similar to the one for the 15-
cornered polygon, you can also
construct a 51-cornered polygon
(from triangle and 17) and an
85-cornered polygon (from pen-
tagon and 17).

Well, what is Gauss’s law?
What is possible?

FOR YOUR INFORMATION

5 49

Gauss’s first reasoning was that
only polygons with an odd
number of sides need to be con-
sidered. The even-numbered poly-
gons are just the result of halving
angles; the whole “square se-
quence” works that way, because
you first halve a full circle, then
the semi-circle and so forth.
Gauss then found and proved
that the odd-numbered polygons
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which can be constructed are the
same as the Fermat primes.
Therefore you can construct:

2! 41 = 3 (triangle)
22 4 1 = 5 (pentagon)
2 41 =17

2% 4 1 = 257

218 4+ 1 = 65,537

All of them actually have been
constructed, the last one of this
series only once. And you can also
construct odd-numbered polygons
where the number is the product
of the multiplication of two Fer-
mat primes, hence the 15-cor-
nered polygon (3 x 5) and the 51
and 85-cornered polygons (3 x 17
and 5 x 17, respectively). Like-
wise the 3 x 257-cornered poly-
gon, etc., etc., should be possible.

But 7, 9 and 13 are not.

ANY QUESTIONS?

How does a living cell know
when to stop growing? Does the
action of gravity have anything
to do with the decision of en
ameba to split?

David L. Osborn
Higashi-Nada Ku
Kobe City, Japan

The answer to this question
is simple, if probably unsatis-
factory: we do not know. There
is obviously a complex of fac-
tors involved that will have to
be unraveled slowly and pa-
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tiently. Nor is it certain that
an answer which would apply
to a cell that is part of a unit
(say, in the leaf of a tree or in
the muscle of an animal) would
also apply to cells that are
“free,” as, for example, the red
corpuscles that circulate in our
blood.

In the case of the ameha,
cited by you, one might think
of gravity as the determining
factor if the ameba were a dry-
land creature. But since it lives
in water, which supports every
portion of it, all the responsi-
bility can’t be placed on gravity
alone.

I remarked in one of my
books that one of the biological
research projects after the com-
pletion of the space station
might well be to have unicellu-
lar plants and animals, like bac-
teria and amebas, grow in a
zero-g condition with plenty of
food around and see what hap-
pens. I can’t predict what will
happen, but I do believe that
whatever is going to happen will
furnish the main clue for an
answer to your question.

The Milky Way stretches from
the northeast to the southwest.
Does this give any indication as
to our position in our galaxy?
And another question: is the
plane of the Moon's orbit around
the Earth constant or does the
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Moon travel in various paths
around us?

Irma Anita Jones

Route I, Box A

Comanche, Oklahoma

As to the first question: no.
But from other ohservations, it
has bheen concluded that our
sun and its family of planets
are between two-thirds and
three-quarters of the total pos-
sible distance from the center.
In other words, it is at least
twice as far from the Sun to
the center of the Galaxy as
it is from the Sun to the rim.
The orbit of the Moon hap-

pens to be unusually compli-
cated and its calculation ranks
among the more difficult prob-
lems. The minimum distance is
221,463 miles, the maximum
distance 252,710 miles. The in-
clination of the plane of the
Moon’s orbit, compared to the
ecliptic, the plane of the Earth’s
orbit, also varies. It can be as
little as 4 degrees and 57 min-
utes of arc and as much as 5
degrees 83 minutes of arc.
This means that there is a kind
of doughnut-shaped volume of
space around the Earth which
contains all the possible posi-
tions of the Moon.

I would like to know if the
planets closer to the Sun rotate
taster or slower; is there any re-
lationship between the distance

FOR YOUR INFORMATION

from the Sun and the speed of

rotation of planetary bodies?
James A. Miller
2108 S.E. 156th
Portland, Oregon

I wish I could be perfectly
sure that you actually mean *‘ro-
tation” (around the axis) and
not *“revolution” (around the
Sun). As regards the latter,
there is a very precise and clear-
cut relationship between the
orbital velocity of a planet and
its distance from the Sun. The
closer they are to the Sun, the
faster they move — Kepler’s
Third Law — the farther away
from the Sun, the slower.

For example, Venus proceeds
at the rate of 21.7 miles per
second, the Earth moves at 18.5
miles per second, Mars 15 miles
per second, Jupiter 8.1 miles
per second, while Saturn pro-
ceeds at the comparatively leis-
urely pace of “only” 6 miles
per second.

But there is no relationship
between the period of rotation
of a planet and its distance from
the Sun.

Mercury, the innermost plan-
et, completes one rotation in the
same lime it needs for one
revolution, namely 88 days. The
rotational period of Venus is
not known, but it scems to be
about two of our weeks. Earth
and Mars have periods of 24
hours and 24 hours 37 minutes,
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respectively, while Jupiter, Sat-
urn and Uranus rotate quite
fast. The figures are, in the
same order, 9 hours 55 min-
utes, 10 hours 14 minutes, and
10 hours 40 minutes. Neptune
nceds 15 hours and 40 minutes,
while the rotation of Pluto is as
yet unknown.

These figures look as if there
might be a relationship between
the size of a planet and its
diurnal period because Jupiter,
with an equatorial diameter of
86,700 miles, is the biggest
planet and also has the shortest
period. Saturn, Uranus and
Neptune are slower in the order
mentioned, which is also the
order of decreasing diameters,
namely 71,500, 32,000 and
31,000 miles, respectively. Like-
wise, when you consider the
inner planets, Earth has a short-
er diurnal period than either
Venus, Mars or Mercury, and
Earth is the biggest of the inner
planeta.

This sounds like an intrigu-
ing idea until you look at the
masses of the planets rather
than their diameters. Jupiter
does rotate faster than Saturn,
the difference being 20 min-
utes. But Jupiter’s mass is equal

to 317 Earth masses, while Sat-
urn’s is equal to 95 Earth
masses. Saturn rotates faster
than Uranus (25 minutes differ-
ence), but the difference in
mass between these two is even
more impressive, for Uranus
has only 14.7 Earth masses.
Neptune needs 5 hours more
than Uranus, but while the
handbook will tell you that
Uranus has a somewhat larger
diameter than Neptune, the
same handbook will tell you
that Neptune is the more mas-
sive of the two, having 17.2
Earth masses.

That these differences in ro-
tational period are amot in pro-
portion to the differences in
mass is especially clear in the
case of the inner planets. In
round figures, Earth is ten
times as massive as Mars, yet
the Martian period is only 37
minutes longer.

In short, there is no relation-
ship between period of rota-
tion and distance from the Sun,
but in general it may be said
that, at least in our solar sys-
tem, the more massive planets
tend to rotate faster than the
lighter ones.

—WILLY LEY
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