ANALYSIS OF TEMPERATURE, PRESSURE AND DENSITY OF THE ATMOSPHERE EXTENDING TO EXTREME ALTITUDES

G. GRIMMINGER

NOVEMBER, 1948

The RHID Corkoration
1500 fourth st. - santa monica - california
Price $\$ 2.85$

This monograph has been prepared under the sponsorship of the United States Air Force. Parts I and II were issued previously for limited distribution in February 1947. Part III was completed in January 1948. With the cooperation of the Air Force, this publication is being made generally available at a nominal charge to cover printing costs.

CONTENTS

SUMMARY xi
LIST OF SYMBOLS xiii
INTRODUCTION 1
SECTIONS
I. THE ATMOSPHERE UP TO THE F_{2} LAYER 3
A. The Temperature Distribution 4
B. The Composition 16
C. Effect of Composition on the Determination of the Temperature in an Ionized Layer 20
D. The Calculations 21
II. THE ATMOSPHERE ABOVE THE F_{2} LAYER - MODELS I AND II 52
A. The Temperature Distribution and the Interstellar Gas 52
B. The Distribution of Angular Velocity. 54
C. The Composition. 56
D. The Limit of the Atmosphere 61
E. The Calculations for Atmospheric Model I 69
F. The Calculations for Atmospheric Model II. 86
III. THE ATMOSPHERE ABOVE THE F_{2} LAYER - MODEL III. 104
A. The Maximum Temperature of the Upper Atmosphere (Exosphere). 105
B. The Height of the Base of the Exosphere (Dynamical Orbit Region) 111
C. Diffusion Equilibrium. 116
D. Density Calculation for the Region Between the F_{2} Layer and the Level of Diffusion Equilibrium. 116
E. Density Calculation for the Region Between the Level of Diffusion Equilibrium and the Base of the Exosphere. 119
F. Density Calculation for the Exosphere 121
IV. CONCLUSIONS 122
REFERENCES 143

LIST OF TABLES

1 Temperature of Troposphere and Stratosphere, Latitude 45° 4
2 Temperature of Troposphere and Stratosphere, Latitude 0° 4
3 Tentative Standard Temperature Values for the Region $20-120 \mathrm{~km}$, Latitude 45° 5
4 Ionosphere Temperatures. 9
5 Temperature in the F-Region at the Equator According to Fuchs 9
6 Composition of Tropospheric Air 16
7 Composition of the Atmosphere up to the F_{2} Layer at the Equator 18
8 Composition of the Atmosphere up to the F_{2} Layer, Latitude 45°. 18
9 Temperatures in the E and F_{2} Layers, Latitude 45° 20
10 Radius of the Earth and the Acceleration of Gravity 22
11 Values of Temperature, Pressure, and Density up to the F_{2} Layer, Latitude 0°. (Engr. Units) 26
Values of Temperature, Pressure, and Density up to the F_{2} Layer, Latitude 0°. (Metric Units) 29
13 Values of Temperature, Pressure, and Density up to the F_{2} Layer, Latitude 45°. (Engr. Units) 32
14 Values of Temperature, Pressure, and Density up to the F_{2} Layer, Latitude 45°. (Metric Units) 35
15 Atmospheric Model I. Possible Composition States. 58
16 Assumed Composition of the Interstellar Gas in the Vicinity of the Planet Earth. 60
17 Maximum Possible Height of Limit of Atmosphere Based on Escape Velocity for a Constant Speed Gas 62
18 Atmospheric Model I. Limit of the Atmosphere at Latitude 0° Based on Continuity of Pressure with the Interstellar Gas 67
19 Atmospheric Model I. Limit of the Atmosphere at Latitude 0° Based on Continuity of Density with Interstellar Gas 67
20 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=0.5$, Latitude 0°. (Engr. Units) 70
21 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=7$, Latitude 0°. (Engr. Units) 71
22 Atmospheric Model I. Valués of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=14$, Latitude 0°. (Engr. Units) 72
23 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=0.5$, Latitude 0°. (Metric Units) 73
24 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=7$, Latitude 0°. (Metric Units) 74
25 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=14$, Latitude 0°. (Metric Units) 75
26 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=7.0$, Latitude 45°. (Engr. Units) 76
27 Atmospheric Model I. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Based on $M_{L}=7.0$, Latitude 45°. (Metric Units) 77

LIST OF TABLES (Cont'd)

31 Atmospheric Model II. Conditions at the Height h_{*}, LatitudAtmospheric Model II. Total Number of Particles N_{1} Above the Height h_{1}, Latitude 45° 94
Atmospheric Model II. Values of Height h_{*}, Latitude 45° 95
Atmospheric Model II. Conditions at the Height h_{*}, Latitude 45° 95
Atmospheric Model II. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Latitude 0°. (Engr. Units) 96
35 Atmospheric Model II. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Latitude 0°. (Metric Units) 97AtmospheriDensity Above the F_{2} Layer, Latitude 45° (Engr. Units)129
45 45
Atmospheric Model III. Values of Temperature, Pressure, and Density Above the F_{2} Layer, Latitude 45° (Metric Units) 130

LIST OF FIGURES

1 Vertical Distribution of Temperature at the Equator from Sea Level up to 120 km . (Metric Units) 7.
2 Vertical Distribution of Temperature at the Equator from Sea Level up to 75 Miles. (Engr. Units) 7
3 Vertical Distribution of Temperature at Latitude 45° from Sea Level up to 120 km . (Metric Units) 8
4 Vertical Distribution of Temperature at Latitude 45° from Sea Level up to 75 Miles. (Engr. Units) 8
5 Vertical Distribution of Temperature in the F Region at the Equator. (Metric Units) 10
6 Vertical Distribution of Temperature in the F Region at the Equator. (Engr. Units) 11
7 Vertical Distribution of Temperature in the F Region at Latitude 45°. (Metric Units) 14
8 Vertical Distribution of Temperature in the F Region at Latitude 45°. (Engr. Units) 15
9 Degree of Ionization in the E and F Regions 19
10(a) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Engr. Units) 38
10(b) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Engr. Units) 39
10(c) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Engr. Units) 40
11(a) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Metric Units) 41
ll(b) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Metric Units) 42
ll(c) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 0°. (Metric Units). 43
12(a) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 45°. (Engr. Units) 44
12(b) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 45°. (Engr. Units) 45
13(a) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 45°. (Metric Units) 46
13(b) Vertical Distribution of the Density Ratio σ from Sea Level up to the F_{2} Layer, Latitude 45°. (Metric Units) 47
14 Vertical Distribution of the Sonic Velocity from Sea Level up to 100 Miles, Latitude 0°. (Engr. Units) 48
15 Vertical Distribution of the Sonic Velocity from Sea Level up to 160 km , Latitude 0°. (Metric Units) 49
16 Vertical Distribution of the Sonic Velocity from Sea Level up to 100 Miles, Latitude 45°. (Engr. Units) 50

LIST OF FIGURES (Cont'd)

17
Vertical Distribution of the Sonic Velocity from Sea Level up to 160 km , Latitude 45°. (Metric Units) 51
Solutions of Equation (50) Corresponding to Conditions at Latitude 0° 68
Adopted Values of Temperature for Atmospheric Model I from the F_{2} Layer up to 1000 Miles, Latitude 0°. (Engr. Units) 78
Adopted Values of Temperature for Atmospheric Model I from the F_{2} Layer 79up to 1600 km , Latitude 0°. (Metric Units)
$\cdot 21$
Adopted Values of the Density Ratio σ for Atmospheric Model I from theF_{2} Layer up to 1000 Miles , Latitude 0°. (Engr. Units)80
Adopted Values of the Density Ratio σ for Atmospheric Model I from the F_{2} Layer up to 1600 km , Latitude 0°.. (Metric Units) 81
Adopted Values of Temperature for Atmospheric Model I from the F_{2} Layer up to 1000 Miles, Latitude 45°. (Engr. Units) 82
Adopted Values of Temperature for Atmospheric Model I from the F_{2} Layer up to 1600 km , Latitude 45°. (Metric Units) 83
Adopted Values of the Density Ratio σ for Atmospheric Model I from the F_{2} Layer up to 1000 Miles, Latitude 45°. (Engr. Units) 84
Adopted Values of the Density Ratio σ for Atmospheric Model I from the F_{2} Layer up to 1600 km , Latitude 45°. (Metric Units) 85
Atmospheric Model II. Total Number of Particles Above the Height h_{1} Contained in a Colurm of Unit Cross Section, Latitude 0° 92
Atmospheric Model II. Total Number of Particles Above the Height h Contained in a Column of Unit Cross Section, Latitude 45°. 92
Adopted Values of the Density Ratio σ for Atmospheric Model II from h_{*} up to 1000 Miles, Latitude 0°. (Engr. Lnits) 100
Adopted Values of the Density Ratio σ for Atmospheric Model II from h_{*} up to 1000 Miles, Latitude 0°. (Metric Units) 101
Adopted Values of the Density Ratio σ for Atmospheric Model II from h_{*} up to 1000 Miles, Latitude 45°. (Engr. Units) 102
Adopted Values of the Density Ratio σ for Atmospheric Model II from h_{*} up to 1000 Miles , Latitude 45°. (Metric Units) 103
Atmospheric Model III. Vertical Distribution of the Density Ratio σ From the F_{2} Layer up to 1000 Miles at Latitude 0° (Engr. Units) 131
Atmospheric Model III. Vertical Distribution of the Density Ratio σ From the F_{2} Layer up to 1600 km at Latitude 0° (Metric Units). 132
Atmospheric Model III. Vertical Distribution of the Density Ratio σ From the F_{2} Layer up to 1000 Miles at Latitude 45° (Engr. Units).. 133
Atmospheric Model III. Vertical Distribution of the Density Ratio σFrom the F_{2} Layer up to 1600 km at Latitude 45° (Metric Units).134
Atmospheric Model III. Vertical Distribution of the Temperature and Composition From the F_{2} Layer up to 1000 Miles (Engr. Units) 135
Atmospheric Model III. Vertical Distribution of the Temperature and Composition From the F_{2} Layer up to 1600 km (Metric Units) 136
Vertical Distribution of the Density Ratio σ From Sea Level up to 120 km , Latitude 45° 137
Vertical Distribution of Mean Molecular Weight From Sea Level up to the F_{2} Layer, Latitude 45° 138

LIST OF FIGURES (Cont'd)

41 Vertical Distribution of Temperature Above the F_{2} Layer for Models I, II, and III at Latitude 45° (Metric Units).......................... 139
42 Vertical Distribution of Mean Molecular Weight Above the

43 Vertical Distribution of the Density Ratio σ Above the
F_{2} Layer for Models I, II, and III at Latitude $45^{\circ} \ldots \ldots$.
44 Plot Showing the Small Effect of the Value Used for M_{L} in
Determining the Vertical Density Distribution for Model I, Latitude $0^{\circ} \ldots . .142$

SUMMARY

Values giving the vertical distribution of temperature, pressure, and density in the atmosphere from sea level up to extreme heights of the order of 5000 miles or more have been derived for the atmosphere both at the equator and at middle latitudes. In view of the rather complete lack of knowledge concerning atmospheric conditions in regions above the F_{2} layer of the ionosphere, calculations for these regions have been carried out on the basis of three different atmospheric models or concepts. The atmospheric model I is based on the hypothesis or concept that there is an outer atmospheric limit far beyond the F_{2} layer where the atmosphere is in thermal equilibrium with the interstellar gas at a kinetic temperature of $10,000^{\circ} \mathrm{K}$. This demands that the temperature continue to increase beyond the F_{2} layer. The mean molecular weight is assumed to decrease with height in a specified manner. Typical results derived on this basis are given in Tables 21 and 26.

The atmospheric model II is based on the concept that above a certain height, situated somewhere above the F_{2} layer, the mean free path of the gas particles becomes so large, and the collision frequency becomes so small, that the particles move over dynamical orbits under essentially free flight conditions in a gravitational field, and those moving fast enough would be able to rise to great distances with but little chance of collision with other particles. If the effects of radiation are negligible, the temperature distribution in this region will be isothermal. Typical results derived on this basis, when the composition (molecular weight) is assumed constant, are contained in Tables 34 and 36.

Atmospheric model III is similar to model II inasmuch as it is based upon a free-flight dynamical orbit region ("exosphere") which is isothermal. In model III, further consideration is given to the question of the temperature of the exosphere and the height where it may be considered to begin; and, unlike model II, the composition is variable with height - the variation with height being determined by the assumption of diffusion equilibrium. In this model the effects of diffusion equilibrium are treated on a more rational basis than was the case for model I. Typical results are contained in Tables 42 and 44.

Through an oversight, the formula $g^{\prime}=g_{a}(a / r)^{2}-r \Omega^{2} \cos \theta$ was used for the apparent grarity instead of the correct formula $g^{\prime}=g_{a}(a / r)^{2}-r \Omega^{2} \cos ^{2} \theta$. As far as the results for latitude 0° are concerned, this introduces no error. At latitude 45° the values for g^{\prime} (and ϕ) are slightly too low, but the error is extremely small. The corresponding error produced in the pressure and density, ete., is entirely negligible and is insignificant in comparison with the uncertainties which exist in the temperature and molecular weight. From the hydrostatic relation

$$
\log \frac{p}{p_{1}}=-\int_{h_{1}}^{h} \frac{1}{H} d h \equiv-\int_{h_{1}}^{h} \frac{M_{g}^{\prime}}{R_{u} T} d h
$$

[^0]
SYMBOLS

```
a = radius of the earth.
c = adiabatic speed of sound.
C
C
C
CH
CHe
d = mean particle diameter.
E = kinetic energy.
e = electron, electronic charge.
g' = apparent acceleration of gravity at any height.
ga}= absolute value of gravity at sea level
g}\mp@subsup{g}{a}{\prime}=\mathrm{ apparent gravity at sea level.
g\prime = apparent gravity at the height h*.
\mp@subsup{\mathbf{g}}{}{\prime}= mean apparent acceleration of gravity in the interval, h - h_.
H=scale height = R 
H* = scale height at the base of the exosphere (dynamical-orbit region).
h = height above sea level.
hd}=\mathrm{ height above sea level where diffusion equilibrium begins.
hL}=\mathrm{ height above sea level of the limit of the earth's atmosphere.
ho = height above sea level of the F}\mp@subsup{F}{2}{}\mathrm{ layer.
h* = height above sea level at the base of the exosphere (dynamical-orbit region)
k = Boltzmann's constant = 1.381 }\times1\mp@subsup{0}{}{-16}\textrm{cm}\mathrm{ dyne/ }\mp@subsup{}{}{\circ}\textrm{K}
L = mean free path of atmospheric gas particle.
M = mean molecular weight of gas mixture.
Mo
ML}=\mathrm{ mean molecular weight at the limit of the earth's atmosphere.
M
M* = mean molecular weight at the height }\mp@subsup{h}{*}{*
m = mean particle mass of gas mixture.
me}=\mathrm{ mass of electron.
mo = mass of oxygen atom.
m
```

```
m* = mean particle mass at the height h.*
N
n = number of particles per unit volume.
ne = number of free electrons.
n
n+ = number of positive ions.
no = number of oxygen atoms per unit volume.
n}=\mathrm{ number density of constituent }x\mathrm{ .
n
n* = number of particles per unit volume at the height h**
P = collision probability for a particle.
p = pressure.
pa}=\mathrm{ pressure at sea level.
p
po = pressure at the F}\mp@subsup{F}{2}{}\mathrm{ layer.
p
p* = pressure at the height h.
Ru
r = distance from the center of the earth to a point in the earth's atmosphere =
        a +h.
rd}=\mathrm{ distance from the earth's center to the height where diffusion equilibrium
        begins.
r
    a + hL
ro = distance from the earth's center to the F}\mp@subsup{F}{2}{}\mathrm{ layer.
r. = distance from the earth's center to the height h.*
S = collision cross section.
T = absolute temperature.
T
        18,000 % R.
To}=\mathrm{ absolute temperature at the F F layer.
T
V
v = mean particle velocity.
a= vertical gradient of temperature, dT/dh.
\beta= vertical gradient of molecular weight, dM/dh.
\gamma= ratio of specific heats = C C / C v}
0 = latitude.
\nu = mean collision frequency of gas particles.
xiv
```

```
\rho= nm = mass density.
\rho
\rho
\rho
\rho
\rho
\rho
\rho
\rho}\mp@subsup{x}{*}{}=\mathrm{ partial density contributed by constituent x at the height }\mp@subsup{h}{*}{}
\rho* = density at the height \mp@subsup{h}{*}{}.
\sigma = the density ratio = \rho/ \rhoa.
\phi = apparent gravity potential function.
\phi* = apparent gravity potential function at the height }\mp@subsup{h}{*}{*
\phi
\Omega= constant angular velocity of rotation of the earth's atmosphere = 7.29211 }\times1\mp@subsup{0}{}{-6
        radians/sec.
\omega = variable angular velocity of rotation of the atmosphere.
```


ANALYSIS OF TEMPERATURE, PRESSURE, AND DENSITY OF THE ATMOSPHERE EXTENDING TO EXTREME ALTITUDES

INTRODUCTION

Owing to the recent important developments in the field of high-speed, highaltitude rockets and jet-propelled missiles, more and more demand has arisen for information concerning the temperature, pressure, and density of the atmosphere up to altitudes of the order of 100 to 300 miles or more. The pressure and density at such heights are extremely small, corresponding to conditions of a highly rarefied gas. Nevertheless, there may still be sufficient atmosphere to affect the motion of a long-range rocket travelling at high supersonic speeds. This would be especially true, for example, if one should consider the dynamical effects of the atmosphere on the motion of a high-speed body (speeds of the order of $25,000 \mathrm{ft} / \mathrm{sec}$) travelling about the earth on a circular orbit as a satellite. Here the rarefied gas effects, although small in themselves, operate over a sufficiently long time interval to give an integrated effect which may be appreciable. It is also conceivable that estimates of the physical state of the atmosphere at extreme altitudes might be of some use - in various ways as yet unforeseen - in connection with certain problems which might arise in the study of interplanetary rockets.

At an altitude of about 100 miles where the mean free path of the molecules of the atmospheric gas becomes comparable to the dimensions of a rocket, the drag of the rocket in the rarefied gas must be computed on the basis of gas kinetics or free molecule flow rather than from the gas-dynamical laws of a continuous medium. In this case the drag coefficient is quite large, having a value of at least $2.0^{(1),(1 a),(2)}$. The gas-dynamical laws based on a continuous medium probably begin to break down at even lower altitudes where the mean free path of the gas particles takes on values equivalent to the thickness of the boundary layer. Furthermore, since the thickness of a shock wave must be at least as large as the mean free path ${ }^{\ddagger}$, it follows that in the highly rarefied atmosphere at high altitudes where the laws of free molecule flow apply, shock wave phenomena can no longer take place, at least not in any sharply defined fashion as is the case under conditions of normal temperature and pressure.

Thus, in evaluáting the performance of very-high-speed, high-altitude rockets, it becomes necessary to have values for the physical properties of the upper atmosphere up to altitudes which heretofore were of little interest to the meteorologist or the aeronautical engineer. Values for the state of the atmosphere up to 100 km have

For references see p. 143.
\pm Cf Thomas, L.H., "Note on Becker's Theory of the Shock Front, "Jour. Chem. and Physics, Vol.12, No.11, p.449, November, 1944.
been fairly well established. Above this level, the knowledge becomes more and more uncertain and speculative with increasing altitude. In spite of these uncertainties, a preliminary attempt will be made here to calculate the physical properties of the atmosphere out to great distances beyond the F_{2} layer and to determine, for example, what might be considered as the "limit" of the atmosphęre (atmospheric model I). Although the results derived for the region above the F_{2} layer are more or less open to question, they may at least be considered as a basis for extrapolating to the regions beyond the F_{2} layer up to heights of the order of $500-1000$ miles $(800-1600 \mathrm{~km})$.

For the purpose of discussion, the atmosphere is usually divided into three main regions. The atmosphere from sea level to $10-15 \mathrm{~km}$ is referred to as the troposphere, and that above this up to about 30 km is called the stratosphere. The region above the stratosphere extending outward to interplanetary space may be called the upper atmosphere.

The atmosphere above about 80 km is strongly ionized and hence this region of the upper atmosphere, from 80 km outwards, is known as the ionosphere. The ionosphere is of fundamental importance in radio-wave propagation since it is owing to the reflection of radio waves by the ionosphere that long distance radio communication is possible. It seems to be established that the ionization of the ionosphere, and therefore its electrical conductivity, is caused primarily by the ultra-violet solar radiation.

The ionosphere itself is divided into three main regions or layers which are stratified on the basis of electron or ion density ${ }^{(3),(4)}$. The lower of these regions, known as the E layer, is moderately ionized and is situated in the vicinity of the $100-\mathrm{km}$ level. The next higher layer, the F_{1} layer, is more strongly ionized and is situated in the vicinity of 200 km . Still higher and still more strongly ionized is the F_{2} layer at about 300 km . There is recent evidence ${ }^{(73)}$ which strongly suggests the presence of an additional ionized layer, called the G layer, situated above the F_{2} layer somewhere in the region from 400 to 700 km . The upper region of ionization comprising the F_{1} and F_{2} layers is referred to in its entirety as the F region. The regular E layer and the F_{1} layer are present only during the day and are most intensely ionized during the hours of local noon. A sporadic E layer may be present at any time.

Diurnal changes also occur in the F region. The concept and terminology used in the older literature was that during the night there was a merging of the F_{1} and F_{2} layers to form a single layer, referred to simply as the F layer. In the newer terminology it is more clearly recognized that the F_{2} layer maintains its identity throughout the night while undergoing diurnal variations. The regular E layer and the F_{1} layer are not present during the night, and it is unnecessary to use the term F layer in this connection. The term F region is applied to the upper region of ionization regardless of time of day; it comprises the F_{1} and F_{2} layers during the day and the F_{2} layer during the night.

Since the main aim of this study is to arrive at tentative working values for a "standard" upper atmosphere, no attempt will be made at an especially critical discussion; but rather the various data which are available will be presented, and what appear to be the most reasonable deductions from them will serve as a basis
for the calculations. The calculations will be carried out for the atmosphere at the equator and also at latitude 45°. Although many gaps and uncertainties still exist in the knowledge of the upper atmosphere, it is believed that the results presented here, at least up to the F_{2} layer, represent about the best that can be done considering the data which are available at the present time (see footnote 3, page 12), and that the values given for the temperature, pressure, and density up to the F_{2} layer may be accepted with considerable confidence. It must be emphasized that the calculations for the atmosphere beyond the F_{2} layer, where there are no data available and where the atmospheric models considered here are based on rather speculative reasoning, must be regarded as representing little more than possible values. However, there seem to be no other calculations of this nature available, and the values derived here should at least give some indication of the limits within which the actual values would lie.

The writer asks to be excused for frequently using mixed systems of units. This happens because all the literature on the subject is based on the c.g.s. system, while the values used in aeronautical applications are always desired in the engineering system.

I - THE ATMOSPHERE UP TO THE F_{2} LAYER

The exact calculation of the variation of atmospheric pressure and density with altitude requires a knowledge of the following quantities as a function of altitude above the earth's surface.

1. Temperature.
2. Composition. This includes not only the kind of constituent gases, but also the degree of dissociation and also of ionization, since these effects can be important in determining the value of the molecular weight which is used in the equation of state. For example, consider a gas composed initially of molecular oxygen having the molecular weight 32 . If this gas undergoes complete dissociation into the atomic state the molecular weight is reduced to 16 . If, further, the gas is not only completely dissociated but also completely ionized, the mean molecular weight is reduced to 8 owing to the presence of positive ions and free electrons in equal number. Finally, a knowledge of the composition presupposes a knowledge of the degree of diffusion equilibrium which is present; that is, the degree to which the constituent gases are distributed in the vertical according to their molecular weights, with the lighter gases situated above those which are heavier.
3. The Angular Velocity of Rotation of the Atmosphere about the Axis of the Earth. The angular velocity determines the value of apparent gravity and thus has an effect in determining the distribution of pressure.

The temperature conditions in the troposphere and stratosphere are well known from direct measurements by means of sounding balloons and form the basis for the standard atmosphere used in aeronautics as given by Diehl ${ }^{(7)}$. These values will be used to represent conditions at latitude 45°. The stratosphere at a temperature of $218^{\circ} \mathrm{K}$ is extended from 20 km to 32 km in accordance with a recent recommendation of the NACA Subcommittee on Upper Atmosphere ${ }^{(13)}$. The significant levels for this atmosphere are shown in Table 1.

Table 1

TEMPERATURE OF TROPOSPHERE AND STRATOSPHERE, LATITUDE 45°				
Altitude, km	0	10.77	32	
Temperature, ${ }^{\circ} \mathrm{C}$	15	-55	-55	
Temperature, ${ }^{\circ} \mathrm{K}$	288	218	218	
Pressure at sea level $=760 \mathrm{~mm}$ of Hg				

The troposphere and stratosphere temperatures at the equator will be based on the Batavia data ${ }^{(8)}$. Values taken from the mean annual curve (Fig. 102, Ref. 8), with linear extrapolation from 25 to 30 km , are given in Table 2.

Table 2
temperature of troposphere and stratosphere, latitude 0°.

Altitude, km	0	5	10	16	30
Temperature, ${ }^{\circ} \mathrm{C}$	26	-2	-37.5	-82	-42
Temperature, ${ }^{\circ} \mathrm{K}$	299	271	235.5	191	231

Pressure at sea level = 1012 millibars
Between the significant levels the temperature is assumed to vary linearly with altitude, which represents a close approximation to actual mean conditions. It will be noted that in the tropics the stratosphere does not have well-defined isothermal properties as in middle latitudes, but rather is characterized by temperature increasing with height.

Above about 35 km there are no direct measurements of temperature and the only values available are those which result from indirect methods ${ }^{[1]}$. Thus the available values for the temperature of the upper atmosphere are based on the study of ${ }^{[1]}$ For footnote see p. 5 .
the ozone absorption of solar radiation, the anomalous propagation of sound, atmospheric tides, the luminosity and speed of meteors, the spectrum of the aurora, and the reflection of radio waves in the ionosphere ${ }^{[2]}$ by the E, F_{1}, and F_{2} layers. An account of these studies and their results has been given by Haurwitz ${ }^{(\theta)}$, Penn$\operatorname{dorf}(10),(11)$, and Gutenberg(12).

The results of these studies indicate that above the stratosphere the temperature increases to a maximum value in the neighborhood of 50 km , decreases to a minimum value at around 80 km , and then increases again to a high value at 120 km . The tentative standard values of temperature for this region as adopted by the NACA Subcommittee on Upper Atmosphere ${ }^{(13)}$ are given in Table 3.

Table 3

TENTATIVE STANDARD TEmperature values FOR THE REGION $20-120 \mathrm{~km}$, LATITUDE 45°

$\begin{gathered} \text { Altitude } \\ \text { km } \end{gathered}$	Probable Minimum Temp. . ${ }^{\circ} \mathrm{K}$	Tentative Standard Temp., ${ }^{\circ} \mathrm{K}$	Probable Maximum Temp. , ${ }^{\circ} \mathrm{K}$
20	---	218	250
25	---	---	250
32	---	218	---
45	200	---	380
50	---	355*	-..
55	300	---	---
60	---	$355 *$	---
70	---	---	380
78	---	240	-
80	170	---	300
83	---	240	---
120	300	375	600

* The value $355^{\circ} \mathrm{K}$ has been inadvertently used here instead of the intended value $350^{\circ} \mathrm{K}$. However, in view of the small value of this difference, and also the uncertainty concerning the exact value which should be used, the effect is entirely inconsequential.

Although these values refer mainly to middle latitudes, they will also be used for the equatorial atmosphere above 32 km , mainly because corresponding figures for the equatorial regions seem to be lacking, and also because they would per-
[1] However, the vertical distribution of density up to 100 km has been measured recently by using a $V 2$ rocket. The measured values of density are in good agreement with those calculated by using the temperature distribution of Table 3. See Physical Review, Vol. 70, p.985, December, 1946, "Pressure and Temperature Measurements in the Upper Atmosphere." Also, see "Upper Atmosphere Temperatures faom the Helgoland Big Bang," Bulletin American Meteorological Society, Vol.29, No.2, p.78, Feb., 1948.
[2] Extended discussions of the ionosphere and the upper atmosphere have been presented by Berkner(3), Chapman (15), Hulburt(4), Mitra(5),(85), and Millington(6).
haps not differ greatly from the values used. The values adopted for the vertical distribution of temperature from sea level up to 120 km at the equator and in middle latitudes are plotted in Figs. 1-4.

It will be noted that there is no isothermal stratospheric region shown for the equatorial atmosphere in Fig. l. Although a very thin isothermal layer could have been deduced from the data used (Ref. 8), this was not very clearly indicated and the neglect of such a layer will be of no practical significance for the calculations.

The temperatures used for the atmosphere above 120 km will be those values deduced from the reflection of radio waves by the F_{1} and F_{2} layers. There are two methods by which the temperature may be deduced from the ionosphere measurements. In one of these, Appleton ${ }^{(14)}$, it is possible to evaluate in the reflecting layer a quantity H called the scale height, which is closely related to the thickness of the ionized layer, and which is defined by

$$
\begin{equation*}
H=\frac{k T}{m g^{\prime}}=\frac{R_{u} T}{M g^{\prime}}, \tag{1}
\end{equation*}
$$

where k is Boltzmann's constant, m is the mean mass of the molecules, R_{u} is the universal gas constant, M is the mean molecular weight, and g^{\prime} is the apparent acceleration of gravity. Thus, when the value of H is known from ionosphere measurements and M is known from the composition, the value of T is then determined. The scale height H is discussed by Chapman (15), and is derived later in Section II-F ${ }^{\dagger}$. The thickness of an ionized layer is usually considered to be roughly about four times the scale height $H^{(74)}$. In the other method, Appleton ${ }^{(18)}$, Eckersley ${ }^{(17)}$, Farmer and Ratcliffe ${ }^{(18)},(18)$, it is possible to estimate in the reflecting layer the average electron collision frequency ν_{e} defined by ${ }^{ \pm}$

$$
\begin{equation*}
\nu_{e}=4 n d^{2} \sqrt{\frac{\pi k T}{m}} \equiv 4 n d^{2} \sqrt{\frac{\pi R_{\mathrm{u}} T}{M}}, \tag{2}
\end{equation*}
$$

where n is the number of particles per unit volume and d their mean diameter. By either method, it is seen that it is necessary to know the composition (i.e., the mean molecular weight M or the mean molecular mass m) in order to estimate the temperature in the ionosphere from radio-wave soundings.

[^1]

VERTICAL DISTRIBUTION OF TEMPERATURE at The equator from sea level up to 120 KM. METRIC UNITS.

FIG. 1

VERTICAL DISTRIBUTION OF TEMPERATURE at the equator from sea level up to 75 MILES. ENGINEERING UNITS.
fig. 2

VERTICAL DISTRIBUTION OF TEMPERATURE at latitude 45° from sea level up to 120 KM. METRIC UNITS.

FIG. 3

VERTIGAL DISTRIBUTION OF TEMPERATURE AT LATITUDE 45° FROM SEA LEVEL UP TO 75 MILES. ENGINEERING UNITS.

FIG. 4

Practically all the deductions of temperature from ionosphere measurements indicate a considerable increase in temperature above 100 km (the E layer), as shown in Table 4, and the evidence in favor of high temperature in the F_{2} layer is very considerable. Although the determination of the value for the temperature in the F_{2} layer is not one of great accuracy, it is generally recognized that a high temperature must prevail in this region of the order of $1000^{\circ} \mathrm{K}$.

Table 4
IONOSPHERE TEMPERATURES (TAKEN FROM PENNDORF ${ }^{(10)}$)

	100 km	$200-300 \mathrm{~km}$	$350-400 \mathrm{~km}$
Maris (1936)	---	$373{ }^{\circ} \mathrm{K}$	---
Müler (1935)	$370{ }^{\circ} \mathrm{K}$	---	---
Fuchs (20) (1936)	---	$400^{\circ}-1000{ }^{\circ} \mathrm{K}$	$1400^{\circ}-1900^{\circ} \mathrm{K}$
Martyn and Pulley ${ }^{(21)}$ (1936)	$300{ }^{\circ} \mathrm{K}$	$1200{ }^{\circ} \mathrm{K}$	---
Appleton (1936)	$100{ }^{\circ} \mathrm{K}$	$1200^{\circ} \mathrm{K}$	---
Godfrey and Price ${ }^{(22)}$ (1937)	---	$1200^{\circ} \mathrm{K}$	---
Das ${ }^{(23)}$ (1938)	$1000{ }^{\circ} \mathrm{K}$	$1000^{\circ} \mathrm{K}$	---
Senda (24) (1938)	---	$1400^{\circ}-2000^{\circ} \mathrm{K}$	---
Bhar ${ }^{(25)}$ (1938)	$300{ }^{\circ} \mathrm{K}$	$600{ }^{\circ} \mathrm{K}$	---
Appleton (1939)	$385^{\circ} \mathrm{K}$	$700^{\circ}-1300^{\circ} \mathrm{K}$	---
Penndorf ${ }^{(26)}$ (1940)	$308^{\circ}-375{ }^{\circ} \mathrm{K}$	$437^{\circ}-936{ }^{\circ} \mathrm{K}$	---

As far as ionosphere temperatures at the equator are concerned, the only values available are those given by Fuchs ${ }^{(20)}$, which are based on observations of the ionosphere at Huancayo, Peru, latitude 12° south, as given by Berkner and Wells ${ }^{(27)}$. The tenperatures derived by Fuchs are shown in Table 5.

Table 5
TEMPERATURE IN THE F REG்ION AT THE EQUATOR ACCORDING TO FUCHS ${ }^{(20)}$

Altitude, $\mathbf{~ k m ~}$	190	220	350	420
Temperature, ${ }^{{ }^{\mathbf{O}} \mathrm{K}}$	400	1000	1400	1900

These values are plotted in Fig. 5 together with the point $T=375^{\circ} \mathrm{K}$ at 120 km from Table 3. Except for the point $T=400^{\circ} \mathrm{K}$ at 190 km , which has been discounted, the values are represented with sufficient accuracy by the straight line shown in the figure, and this is the linear relationship which will be used for the temperature distribution in the F region at the equator. Thus it will be assumed that the temperature in this region is defined by the straight line connecting the points $T=$ $375^{\circ} \mathrm{K}$ at 120 km and $T=1800^{\circ} \mathrm{K}$ at 400 km . The corresponding curve in engineering units is plotted in Fig. 6.

VERTICAL DISTRIBUTION OF TEMPERATURE IN THE F REGION AT THE EQUATOR. METRIC UNITS. (BASED ON HUANCAYO DATA, REFS. 20 AND 27)

FIG. 5

FIG. 6

In the middle latitudes it is seen from Table 4 that considerable choice exists in the temperatures to be used in the F region. It has been decided here to adopt a value of $1100^{\circ} \mathrm{K}$ at 300 km which, from data given by Martyn and Pulley(21) (see Fig. 5 of Ref. 21), represents a probable mean diurnal value. The distribution of temperature is assumed to be linear between this value and the value $375^{\circ} \mathrm{K}$ at 120 km , since there is no information available to specify the exact nature of the temperature curve in this region. It is well known that there is a distinct diurnal variation in the properties of the F region. During the day this contains the F_{1} as well as the F_{2} layer, with the F_{2} layer situated at about 300 km and at a temperature of the order of $1200^{\circ} \mathrm{K}$. During the night only the F_{2} layer remains, and in middle latitudes this is usually at a lower height and temperature than during the day. From the data of Martyn and Pulley it is considered that the mean diurnal condition of the F_{2} layer is represented by the value $1100^{\circ} \mathrm{K}$ at 300 km . No attempt is made here to take into account any seasonal variations which occur, mainly because there seem to be very few data in usable form (height and temperature) available in this respect. The vertical distribution of temperature adopted to represent conditions in the F region in middle latitudes is presented in Figs. 7 and 8 (pp. 14 and 15).

The temperature values used for the F region at the equator are not mean diurnal values but are based on noon observations, and are therefore probably higher than the mean diurnal values would be. So far, no deduced temperature data for Huancayo which could be used to determine mean diurnal conditions have come to the attention of the writer, and although it would no doubt be possible to make such deductions from original Huancayo data, no attempt will be made to do this here ${ }^{[3]}$.

In the calculations by Fuchs using the Huancayo data, it was assumed that both the oxygen and the nitrogen were completely dissociated. As pointed out in Section I-C. the effect of assuming an $0+\mathrm{N}$-atmosphere is to give lower temperatures than would be the case for an $0+\mathrm{N}_{2}$-atmosphere.

As pointed out by Zenneck ${ }^{(28)}$, considering the high values deduced for the temperature of the F_{2} layer together with the rarefied gas conditions existing there, the concept of temperature requires a few remarks by way of explanation. In the rarefied gas of the upper atmosphere it is convenient and perhaps even necessary to think of temperature in terms of "kinetic" temperature. Consider a unit volume of gas, assumed homogeneous for simplicity, containing n particles each of mass m. It is shown in the kinetic theory of gases that the pressure p of the gas may be expressed in the form

$$
\begin{equation*}
p=\frac{1}{3} n m \overline{v^{2}}=\frac{2}{3} n \times \frac{1}{2} m \overline{v^{2}}=\frac{2}{3} \times \frac{\rho}{2} \overline{v^{2}}, \tag{3}
\end{equation*}
$$

[^2]where $\overline{v^{2}}$ is the mean square particle velocity and $\rho=n m$ is the mass density. Thus the pressure is directly proportional to the mean kinetic energy of translation of the gas particles.

The equation of state for a perfect gas

$$
\begin{equation*}
p=\rho \frac{R_{u}}{M} T=\rho \frac{k}{m} T=n k T \tag{4}
\end{equation*}
$$

where R_{u} is the universal gas constant, M is the molecular weight, and k is Boltzmann's constant, may be derived from purely thermodynamical reasoning based only on the assumption of thermodynamic equilibrium, i.e., space and time derivatives equal to zero. In this case the temperature T is the absolute thermodynamic temperature as defined through the second law of thermodynamics.

The equation of state (4) may also be regarded as an empirical relation derived from the laws of Boyle and Gay-Lussac ${ }^{\dagger}$, and temperature may be independently defined by means of this relation. This, for example, would be the temperature indicated by a gas thermometer, which depends for its operation on the concept of pressure as expressed by relations (3). In fact, by comparing (3) and (4), it follows that

$$
\begin{equation*}
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \tag{5}
\end{equation*}
$$

which shows the relationship between the mean kinetic energy of translation of the gas particles and the temperature.

In view of this relation, Eq. (5) may be made the basis for the definition of temperature and may be said to define a "kinetic" temperature rather than a thermodynamic scale of temperature ${ }^{\ddagger}$. From this point of view it would be possible to speak of the temperature of a single particle if it is so desired and to define this by the relation

$$
\begin{equation*}
\frac{1}{2} m v^{2}=k T \tag{5a}
\end{equation*}
$$

where v and T are the instantaneous values for a single particle. From the way in which it is defined, it is seen that the kinetic temperature satisfies the perfect gas equation and is therefore precisely the temperature which is used in calculating the pressure or density. Thus, when a temperature of $1000^{\circ} \mathrm{K}$ or more is specified in the F_{2} layer, for example, this is to be interpreted in terms of Eq. (5), that is, in terms of the mean kinetic energy of the gas particles.

[^3]

VERTICAL DISTRIBUTION OF TEMPERATURE IN THE F REGION AT LATITUDE 45°. METRIC UNITS.

FIG. 7

VERTICAL DISTRIBUTION OF TEMPERATURE IN THE F REGION AT LATITUDE 45°. ENGINEERING UNITS.

FIG. 8

It is shown in statistical mechanics ${ }^{(2 \theta)}$ that when the gas particles have a Maxwellian velocity distribution and the temperature is defined thermodynamically, the equation of state of a perfect gas can be derived. Thus, when the kinetic and thermodynamic temperatures are equal, the gas will have a Maxwellian distribution; or, stated more appropriately in the converse form, the equation of state (4) defines a gas having a Maxwellian velocity distribution if the kinetic temperature is identical with the thermodynamic temperature. This will be the case, provided a time interval can be chosen to correspond to a mean steady state condition, as far as external influences are concerned, and provided this time interval is large compared to the relaxation time, or the time interval between collisions.

Although high kinetic temperatures exist in the F region of the ionosphere, it must not be inferred that a body situated in this region would come into thermal equilibrium with the gas at these temperatures. Owing to the extremely rarefied nature of the gas at these heights, the temperature of the body would be determined solely by radiation processes, any heat transfer resulting from the presence of the gas particles being entirely negligible. If the body is moving at extremely high speeds, there would also be a small amount of heat transfer resulting from the impacts of the free gas particles with the skin of the body, in which the gas particles lose all of their directed kinetic energy upon striking the surface of the body.

I-B. THE COMPOSITION

As far as the composition of the atmosphere is concerned, it is found that the tropospheric values are maintained with little change up to about 80 km . The composition of tropospheric air, as given by Paneth(30), is shown in Table 6.

Table 6
COMPOSITION OF TROPOSPHERIC AIR

Gas	Formula	Volume $\%$	Mass $\%$	Molecular Wt $(0=16.000)$
Nitrogen	N_{2}	78.09	75.53	28.016
Oxygen	O_{2}	20.95	23.14	32.000
Argon	Ar	0.93	1.28	39.944
Carbon Dioxide	CO_{2}	0.03	.046	44.00
Helium	He	5.24×10^{-4}	7.24×10^{-5}	4.002
Hydrogen	H_{2}	5.10×10^{-5}	3.55×10^{-8}	2.016

From the table it is seen that N_{2} and O_{2} account for 99 per cent of the composition, by volume, of the tropospheric air. As pointed out by Chapman(31) and Penndorf(32), the results of auroral spectroscopy indicate that even from 100 km to 1000 km , oxygen and nitrogen are still the main constituents of the atmosphere, and it will be assumed here that the upper atmosphere, at least up to 1000 km , is a nitrogenoxygen atmosphere. However, due to the absorption of ultra-violet solar radiation,
the molecular oxygen undergoes dissociation in the vicinity of the $100-\mathrm{km}$ level, Chapman ${ }^{(31)}$, Wulf and Deming ${ }^{(33)}$, and the oxygen in the remainder of the upper atmosphere is generally regarded as existing mainly in the atomic state. It will be assumed here that the dissociation of oxygen begins at 83 km , becoming complete at 120 km (i.e., the E layer). The question of the dissociation of nitrogen is quite controversial and not nearly so clear; it will be assumed that the nitrogen remains in the molecular state at least up to the F_{2} layer ${ }^{[3 a}$].

From the measurements of the reflection of radio waves, it is known that the upper atmosphere is ionized and that the electron density (number of electrons per unit volume) reaches a maximum in the F_{2} layer. The degree of ionization x of a gas is defined by the ratio

$$
\begin{equation*}
x=\frac{n_{e}}{n_{n}+n_{+}}=\frac{n_{e}}{n_{0}} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& n_{0}=n_{n}+n_{+}=\text {initial number of particles before ionization, } \\
& n_{e}=\text { number of free electrons, } \\
& n_{n}=\text { number of neutral atoms or molecules, and } \\
& n_{+}=\text {number of positive ions, }
\end{aligned}
$$

all referred to a given mass of gas. Thus for complete ionization, $x=1$. This formula presupposes that there are no negative ions and therefore that $\boldsymbol{n}_{\boldsymbol{e}}=\boldsymbol{n}_{+}$. If n denotes the total number of particles in thermal equilibrium (ions, electrons, neutral atoms or molecules) in a given volume of gas, the total pressure p is given from kinetic theory by

$$
\begin{equation*}
p=n k T \tag{7}
\end{equation*}
$$

where T is the absolute temperature and k is the Boltamann constant. This may be written

$$
\begin{equation*}
p=\left(n_{e}+n_{+}+n_{n}\right) k T=n_{0}(1+x) k T, \tag{8}
\end{equation*}
$$

which shows how the ionization can increase the pressure simply by adding free electrons to the gas without changing its mass.

However, from data given by Cowling(34) for the E, F_{1}, and F_{2} layers, it is found that x is of the order of 10^{-5} or smaller, and may therefore be neglected compared to unity in Eq. (7). Typical values of the degree of ionization in the E and

[^4] occurs in the G layer - see Section III-D.
F regions are shown in Fig. 9. Thus, as far as the atmosphere up to the F_{2} layer is concerned, the degree of ionization may be entirely neglected as far as its effect on the calculation of the pressure is concerned. The composition which will be used to represent conditions in the equatorial atmosphere up to the F_{2} layer is given in Table 7.

Table 7

COMPOSITION OF THE ATMOSPHERE UP TO THE F_{2} LAYER AT THE EQUATOR

Altitude km	Composition, \% Volume	Molecular Weight of Mixture, M	Ratio of Specific Heats, γ
0	$21 \% \mathrm{O}_{2}, 78 \% \mathrm{~N}_{2}, 0.93 \% \mathrm{Ar}$	28.9	1.405
83	$20 \% \mathrm{O}_{2}, 80 \% \mathrm{~N}_{2}$	28.8	1.405
120	$33 \% \mathrm{O}, 67 \% \mathrm{~N}_{2}$	24.0	1.46
400 $\left(F_{2}\right.$ layer $)$	$33 \% 0,67 \% \mathrm{~N}_{2}$	24.0	1.46

It will be noted that the composition is assumed to remain unchanged from 120 km up to and including the F_{2} layer; that is, the constituent gases in this region are assumed to be completely mixed, giving an atmosphere of uniform composition. This agrees more or less with the results of Mitra and Rakshit ${ }^{(35)}$ who found that, for an $\mathrm{N}_{2}-\mathrm{O}$ atmosphere with temperature increasing with height, diffusive equilibrium would exist only above 350 km . The values $33 \% \mathrm{O}$ and $67 \% \mathrm{~N}_{2}$ are based on a gas which corresponds to $20 \% \mathrm{O}_{2}$ and $80 \% \mathrm{~N}_{2}$ when there is no dissociation of oxygen. Essentially it is assumed that the dissociation occurs at constant pressure, but that the volume may change.

In middle latitudes it appears likely, Penndor $f^{(11)}$, Regener ${ }^{(36)}$, that there is a slight change in composition at about 50 km to the values $18 \% \mathrm{O}_{2}$ and $82 \% \mathrm{~N}_{2}$. Using these figures the values in Table 8 are obtained as representative of the composition of the atmosphere up to the F_{2} layer in middle latitudes.

Table 8
COMPOSITION OF THE ATMOSPHERE UP TO THE F_{2} LAYER. LATITUDE 45°

Altitude km	Composition, $\%$ Volume	Molecular Weight of Mixture, M	Ratio of Specific Heats, γ
0	$21 \% \mathrm{O}_{2}, 78 \% \mathrm{~N}_{2}, 0.93 \% \mathrm{Ar}$	28.9	1.405
50	$18 \% \mathrm{O}_{2}, 82 \% \mathrm{~N}_{2}$	28.66	1.405
83	$18 \% \mathrm{O}_{2}, 82 \% \mathrm{~N}_{2}$	28.66	1.405
120	$30.5 \% \mathrm{O}, 69.5 \% \mathrm{~N}_{2}$	24.35	1.46
300	$30.5 \% \mathrm{O}, 69.5 \% \mathrm{~N}_{2}$	24.35	1.46
$\left(F_{2}\right.$ layer $)$			

I-C. EFFECT OF COMPOSITION ON THE DETERMINATION
 OF THE TEMPERATURE IN AN IONIZED LAYER

It was pointed out in connection with Eq. (1) that the values derived for the ionosphere temperatures depend on the values used for the mean molecular weight M. It should also be mentioned that the value of H depends on the vertical distribution of the electron density ${ }^{\dagger}$. This has been subjected to a detailed analysis by Pekeris ${ }^{(37)}$ who finds values of H which are less than those previously used as given by Appleton ${ }^{(14)}$. If this result is accepted, this effect alone will give lofer ionosphere temperatures than those derived previously. Using the H-values of Pekeris, Penndorf ${ }^{(10)}$, (26) has calculated new values for the temperature in the E and F_{2} layers for various assumed values of composition M. The results given by Penndorf are shown in Table 9.

Table 9

TEMPERATURES IN THE E AND F_{2} LAYERS
BASED ON PENNDORF ${ }^{(26)}$ AND PEKERIS ${ }^{(37)}$. LATITUDE 45°.

	Designation	Composition	Mean Molecular Weight, M	$H=11.4 \mathrm{~km}$ Temperature	
$\begin{gathered} E \\ \text { Layer } \\ \sim 100 \mathrm{~km} \end{gathered}$	$\begin{aligned} & A_{1} \\ & A_{2} \end{aligned}$	$\begin{aligned} & 81 \mathrm{~N}_{2}, 19 \% 0_{2} \\ & 81 \mathrm{~N}_{2}, 19 \% 0 \end{aligned}$	$\begin{aligned} & 28.78 \\ & 25.74 \end{aligned}$	$\begin{aligned} & 374^{\circ} \mathrm{K} \\ & 330^{\circ} \mathrm{K} \end{aligned}$	
	A_{3} A_{4}^{*}	$\begin{gathered} 67{\% N_{2}}^{2}, 32 \% 0 \\ 75.8 \% \mathrm{~N}_{2}, 9 \% \mathrm{O}_{2}, 15.3 \% 0 \end{gathered}$	$\begin{aligned} & 23.87 \\ & 26.52 \end{aligned}$	$\begin{aligned} & 308^{\circ} \mathrm{K} \\ & 346^{\circ} \mathrm{K} \end{aligned}$	
	Designation	Composition	Mean Molecular Weight, M	$H=20 \mathrm{~km}$ Temperature	$H=30 \mathrm{~km}$ Temperature
$\begin{gathered} F_{2} \\ \text { Layer } \\ \sim 220 \mathrm{~km}{ }^{* *} \end{gathered}$	$\begin{aligned} & B_{1} \\ & B_{2} \end{aligned}$	$\begin{aligned} & 81 \mathrm{NN}_{2}, 19 \% \mathrm{O}_{2} \\ & 93 \% \mathrm{~N}_{2}, 6 \% \mathrm{O}_{2} \end{aligned}$	28.78 27.92	$\begin{aligned} & 625^{\circ} \mathrm{K} \\ & 608^{\circ} \mathrm{K} \end{aligned}$	$\begin{aligned} & 936^{\circ} \mathrm{K} \\ & 912^{\circ} \mathrm{K} \end{aligned}$
	B_{3}	81\% N_{2}, 19\%0	25.74	$557{ }^{\circ} \mathrm{K}$	$834{ }^{\circ} \mathrm{K}$
	B_{4}	36\% ${ }_{2}$, 64\%0	20.30	$442{ }^{\circ} \mathrm{K}$	$662{ }^{\circ} \mathrm{K}$
	B_{5}	$41 \% \mathrm{~N}_{2}, 40 \% \mathrm{~N}, 19 \% 0$	20.12	$437{ }^{\circ} \mathrm{K}$	$655^{\circ} \mathrm{K}$
	B_{8}^{*}		24.03		$795^{\circ} \mathrm{K}$

* Computed from Eqs. (1) and (11).
** The value 220 km for the height of the F_{2} layer is rather low and is about equal to the height ordinarily found for the F_{1} layer.

[^5]The rather large differences between these values show the importance of an accurate knowledge of M and H in deducing the ionosphere temperatures. From the data given by Pekeris ${ }^{(37)}$ it is inferred that the E layer values correspond to a height of about 100 to 110 km and the F_{2} layer values to about 220 km . Thus the E layer values correspond approximately to the height of the middle of the E layer. Using the values in Table 7 the composition in the middle of the E layer will be that of A_{4} (see Table 9), which gives a temperature of $346^{\circ} \mathrm{K}$. This is in good agreement with the value $340^{\circ} \mathrm{K}$ according to the adopted curve, Fig. 7, at $110-\mathrm{km}$ height.

In the F_{2} layer the values B_{6} have been computed to correspond to the composition assumed in Table 7. From Fig. 7 a temperature of $780^{\circ} \mathrm{K}$ is indicated at 220 km , which is in good agreement with the higher of the B_{6} values.

The temperatures used here for the F_{2} region at the equator, as computed by Fuchs, Fig. 5, were based on the assumption that the nitrogen and oxygen were completely dissociated, giving a value for the molecular weight of the atmosphere of about 15. This is much lower than the value $M=24$, which is used here to represent the composition of the F_{2} region, and if Fuchs' values were to be corrected to be consistent with the composition $M=24$, much higher temperatures would result. In fact, the values shown in Table 5 would have to be increased by the factor $24 / 15=$ 1.6. However, in view of the fact that the more exact analysis of Pekeris would lead to values of H which are lower by a factor of about the same order, it is considered that the temperatures adopted according to Fig. 5 are probably quite representative of actual conditions as they stand.

I-D. THE CALCULATIONS

The calculation of the pressure and density is based upon the hydrostatic equation

$$
\begin{equation*}
d p=-\rho g^{\prime} d h, \tag{9}
\end{equation*}
$$

and the equation of state for unit mass

$$
\begin{equation*}
p=\rho \frac{R_{u}}{M} T, \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
p & =\text { pressure } \\
\rho & =\text { mass density } \\
h & =\text { height above sea level } \\
g^{\prime} & =\text { apparent acceleration of gravity } \\
R_{u} & =\text { universal gas constant } \\
M & =\text { mean molecular weight } \\
T & =\text { absolute temperature }
\end{aligned}
$$

In the engineering gravitational system of units, $R_{u}=1544 \times 32.174=49677 \mathrm{ft}-\mathrm{lb} / \mathrm{slug}-$ mole ${ }^{\circ} \mathrm{R}, \rho$ is in slugs $/ \mathrm{ft}^{3}, p$ is in lbs $/ \mathrm{ft}^{2}, T$ is in degrees Rankine, and h is in feet. In the c.g.s. absolute system of units, $R_{u}=83.15 \times 10^{\circ} \mathrm{erg} / \mathrm{gram}-\mathrm{mole}{ }^{\circ} \mathrm{K}, \rho$ is in grams $/ \mathrm{cm}^{3}, p$ is in dynes $/ \mathrm{cm}^{2}, T$ is in degrees Kelvin, and h is in centimeters.

It will be assumed that the atmosphere between sea level and the F_{2} layer rotates with the earth as a solid, so that the apparent gravity is given by

$$
\begin{equation*}
g^{\prime}=g_{a}\left(\frac{a}{r}\right)^{2}-r \Omega^{2} \cos ^{2} \theta \tag{11}
\end{equation*}
$$

where g_{a} is the absolute value of gravity at sea level at the latitude θ and a is the radius of the earth at this latitude. The angular velocity of rotation of the earth is denoted by Ω, and r is the distance from the center of the earth to a point in the earth's atmosphere; i.e., $r=a+h$. The value $\Omega=7.29211 \times 10^{-5}$ radians $/ \mathrm{sec}$ is used for the rotational speed of the earth; values for the earth's radius and acceleration of gravity are given in Table 10.

Table 10
RADIUS OF THE EARTH AND THE ACCELERATION OF GRAVITY

$$
\Omega=7.29211 \times 10^{-5} \text { radians } / \mathrm{sec}
$$

Latitude, θ	Radius of the Earth, a			Apparent Gravity g_{a}^{\prime}		Absolute Gravity g_{a}	
degrees	miles	ft	cm	$\mathrm{ft} / \mathrm{sec}^{2}$	$\mathrm{~cm} / \mathrm{sec}^{2}$	$\mathrm{ft} / \mathrm{sec}^{2}$	$\mathrm{~cm}^{2} / \mathrm{sec}^{2}$
0°	3963.34	2.09264×10^{7}	6.37839×10^{8}	32.088	978.04	32.199	981.43
45°	3956.59	2.08908×10^{7}	6.36751×10^{8}	32.174	980.66	32.253	983.07
90°	3949.92	2.08556×10^{7}	6.35691×10^{8}	32.258	983.22	32.258	983.22

Combining Eqs. (9) and (10) yields

$$
\begin{equation*}
\log \frac{p}{p_{1}}=-\frac{M g^{\prime}}{R_{u}} \int_{h_{1}}^{h} \frac{d h}{T} \tag{12}
\end{equation*}
$$

which gives the pressure p at a vertical distance $\Delta h=h-h_{1}$ above the level h_{1} where the pressure is p_{1}. The molecular weight M and the apparent gravity g^{\prime} are taken outside the integral here, since the interval Δh is taken small enough that it is permissible to use the mean values of M and g^{\prime} appropriate to the interval in question.

Since the vertical distribution of temperature up to the F_{2} layer has been represented by straight line segments, we always have a temperature-height relationship of the form

$$
\begin{equation*}
T=T_{1}+a\left(h-h_{1}\right) \tag{13}
\end{equation*}
$$

where $a=d T / d h=\left(T_{2}-T_{1}\right) /\left(h_{2}-h_{1}\right)$ is the slope of any straight line segment. Thus a is positive for temperature increasing with height and negative for temperature decreasing with height. Introducing this relation, Eq. (12) becomes

$$
\begin{equation*}
\log \frac{p}{p_{1}}=-\frac{M g^{\prime}}{R_{u}} \int_{h_{1}}^{h} \frac{d h}{T_{1}+a\left(h-h_{1}\right)} \tag{14}
\end{equation*}
$$

which may be integrated ${ }^{[3 \mathrm{~b}]}$ giving

$$
\begin{equation*}
p=\frac{p_{1}}{\left[1+\frac{a}{T_{1}}\left(h-h_{1}\right)\right]^{\frac{M g^{\prime}}{a R_{u}}}} \tag{15}
\end{equation*}
$$

[3b] When M is constant in the interval $h-h_{1}$, Eq. (14) may be integrated taking into account the variation of grovity. For an atmosphere which rotates with the earth as a solid, $g^{\prime}=g_{a}(a / r)^{2}-r \Omega^{2} \cos ^{2} \theta$ and the pressure relation may be written

$$
\begin{equation*}
\log \frac{p}{p_{1}}=-\frac{M}{R_{u}} \int_{h_{1}}^{h} \frac{g_{a}\left(\frac{a}{r}\right)^{2}-r \Omega^{2} \cos ^{2} \theta}{T_{1}+\alpha\left(r-r_{1}\right)} d r \tag{14a}
\end{equation*}
$$

This is readily integrated yielding the result

$$
\begin{gather*}
\log \frac{p}{p_{1}}=-\frac{M}{R_{u}}\left\{\left(r-r_{1}\right)\left[\frac{\Omega^{2} \cos \theta}{\alpha}-\frac{g_{a} a^{2}}{r r_{1}\left(T_{1}-a r\right)}\right]\right. \\
\left.+\left[\frac{a g_{a} a^{2}}{\left(T_{1}-a r_{1}\right)^{2}}+\frac{\left(T_{1}-a r_{1}\right) \Omega^{2} \cos ^{2} \theta}{a^{2}}\right] \log \left[\frac{T_{1}}{T_{1}+\alpha\left(r-r_{1}\right)}\right]+\left[\frac{a}{\left(T_{1}-a r_{1}\right)^{2}} g_{a} a^{2} \log \frac{r}{r_{1}}\right]\right\} \tag{14b}
\end{gather*}
$$

This is the formula used for calculating the pressures. From the values of pressure obtained in this way the corresponding density is obtained immediately from the equation of state,

$$
\begin{equation*}
\rho=\frac{M P}{R_{u} T} . \tag{16}
\end{equation*}
$$

The values of temperature, pressure, and density for a standard atmosphere up to the F_{2} layer at the equator and at latitude 45° are tabulated in Tables 'll to 14 . The results are given in both the engineering and c.g.s. systems of units. The density ratio $\sigma=\rho / \rho_{a}$, where ρ_{a} is the density at sea level, is plotted in Figs. 10 to 13. The values in Tables 13 and 14 up to 20 km may differ very slightly from those given by Diehl (7) owing to the use of a slightly different value for the molecular weight.

Other quantities of interest which have been included in the tables are the molecular density, the mean free path, the mean molecular speed, the collision frequency, and the speed of sound. The molecular density n (also called the number density or particle density) is the number of gas particles per unit volume and is given by the expression,

$$
\begin{equation*}
n=\frac{\rho}{m}, \tag{17}
\end{equation*}
$$

where m is the mean mass of the gas particles. An equivalent form which is perhaps more convenient is

$$
\begin{equation*}
n=\frac{\rho}{M m_{1}} \tag{18}
\end{equation*}
$$

where M is the mean molecular weight and m_{1} is the mass of the atom of unit atomic weight ($m_{1}=1.6489 \times 10^{-24} \mathrm{gram}$). The mean free path L is given by

$$
\begin{equation*}
L=\frac{1}{\pi \sqrt{2} n d^{2}}, \tag{19}
\end{equation*}
$$

where d is the mean diameter of the gas particles. From sea level up to 83 km , where all of the particles are molecular, the value $d=3 \times 10^{-8} \mathrm{~cm}$ is considered appropriate. Above 120 km , where electrons, atoms, and molecules are present, it is conceivable that the value $d=2 \times 10^{-8} \mathrm{~cm}$ might be more appropriate. In view of this uncertainty concerning the value for d, L and ν are given in the tables for both values $d=3 \times 10^{-8} \mathrm{~cm}$ and $d=2 \times 10^{-8} \mathrm{~cm}$.

The mean molecular speed v in a Maxwellian gas is found from

$$
v=\sqrt{\frac{8 k T}{\pi m}}
$$

where k is Boltzmann's constant. In view of the relation $k / m=R_{u} / M$, this may be written more conveniently as

$$
\begin{equation*}
v=\sqrt{\frac{8 R_{u} T}{\pi M}} \tag{21}
\end{equation*}
$$

For a constant speed gas the corresponding expression is

$$
\begin{equation*}
v_{s}=\sqrt{3 \frac{R_{u} T}{M}} \tag{22}
\end{equation*}
$$

which differs but very little from the Maxwellian case. The mean collision frequency ν is connected with L and v by the relation $\nu=v / L$, and thus may be computed from the relation,

$$
\begin{equation*}
\nu=\frac{v}{L}=4 n d^{2} \sqrt{\pi \frac{R_{u} T}{M}} . \tag{23}
\end{equation*}
$$

The equation for the adiabatic speed of sound c in a perfect gas is

$$
\begin{equation*}
c=\sqrt{\gamma \frac{R_{\mathrm{u}} T}{M}} \equiv \sqrt{\frac{\gamma p}{\rho}} \tag{24}
\end{equation*}
$$

where γ is the ratio of the specific heats $\left(\gamma=C_{p} / C_{v}\right)$. The speed of sound is plotted in Fig. 14 where it will be noticed that this quantity is not given beyond a height of 100 miles. This is because the ordinary laws of sound propagation probably begin to break down under the same rarefied gas conditions at which the gas dynamical laws become invalid and the gas kinetic laws take over. This probably occurs at some height less than 100 miles. The propagation of sound waves in rarefied gases has been discussed recently by Tsien and Schamberg ${ }^{(38)}$. Their results indicate that with regard to rarefied gas effects there is very little change in the speed of sound up to heights of about 60 miles, which represents about the limit of their curves as far as height is concerned. The damping of the sound, however, becomes appreciable at such heights. The sonic velocities are plotted in Figs. 14 to 17.

Warfield's ${ }^{(13)}$ results giving the properties of the atmosphere up to 120 km appeared at about the same time as those presented here. Both studies - although carried out independently - are based on the same vertical temperature distribution, Table 3.

Values of temperature, pressure, and density up to the F_{2} layer
Latitude, 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Height		ApparentGravicy $\frac{\mathrm{g}}{\mathrm{ft} / \mathrm{sec}^{2}}$	Mean Mol we H	$\left\lvert\, \begin{gathered} \mathrm{T} \mathrm{mpp} \\ T \\ { }^{\circ} \mathrm{R} \end{gathered}\right.$	Scale Height H ft	Pressure $\stackrel{p}{1 \mathrm{~h} / \mathrm{ft}^{2}}$	Pressure Racio p / p_{a}	Density slug/ft ${ }^{\text {a }}$	Density Ratio p/os	Number Density n particles/ft ${ }^{2}$	$\left\|\begin{array}{c} \text { Mean Parti- } \\ \text { cle Speed } \\ v \\ \mathrm{ft} / \mathrm{sec} \end{array}\right\|$	$d=3 \times 10^{-8} \mathrm{~cm}$		d $=2 \times 10^{-5} \mathrm{~cm}$		Speed of Sound $\mathrm{ft} / \mathrm{sec}$
		Mean free Path L ft										$\begin{array}{\|c\|} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \\ 1 / \mathrm{sec} \end{array}$	$\begin{gathered} \text { Mean Free } \\ \text { Path } \\ L \\ \mathrm{ft} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ \nu / \text { sec } \end{array}$		
ft	mi															
0	0	32.088	28.90	8.2	2.883×10^{4}	21	. 0	2.286×10^{-3}	1.000	7.000×10^{29}	1.535×10^{2}	3.321	4.622×10^{2}	7.472×10^{-7}	2.054×10^{6}	10^{3}
5,000	.942	32.072	28.90	522.8	2.802×10^{4}	1774	389	1.974×10^{-3}	. 8636	6.045×10^{29}	$1.513 \times 10^{\circ}$	3.845×10^{-7}	$3.934 \times 10^{\circ}$	8.652×10^{-7}	1.748×10^{6}	1.124 $\times 10^{8}$
10,000	104			507, 5	2.721×10^{4}	1481	. 7002	1.698×10^{-3}	. 7426	5.198×10^{43}	$1.490 \times$	4.472×10	3.333×1	1.006×10^{-6}	1.481×10^{6}	071×10^{8}
15,000	2.841	32.041	28.90	492.1	$2.640 \times 10^{\circ}$	1229	. 5813	1.453×10^{-3}	. 6357	4.450×10^{23}	1.468×10^{9}	5.224×10^{-7}	2.810×10^{6}	1.175×10^{-6}	1.249×10^{8}	$1,090 \times 10^{2}$
16,404	3.107	32.0	28.90	487	2.617×10^{6}	1166	. 5511	1.390×10^{-8}	. 6081	4.257×10^{29}	$1,461 \times 10^{3}$	5.461×10^{-7}	2.676×10^{6}	1.229×10^{-6}	1.189×10^{8}	1.085×10^{2}
20,000	3.788	32.026	28.90	473.8	$2.543 \times 10^{*}$	1014	. 4795	1.245×10^{-3}	. 5447	3.813×10^{28}	1.440×10^{8}	6.096 $\times 10^{-7}$	$2.362 \times 10^{\text {b }}$	1.372×10^{-8}	$1.050 \times 10^{\circ}$	1.070×10^{8}
25,000	4.735	32.011	28.90	454.3	2.440×10^{4}	830,1	. 3925	1.063×10^{-8}	. 4649	3.254×10^{18}	1.410×10^{8}	7.143×10^{77}	1.974×10^{8}	1.507×10^{-6}	8.775×10^{8}	1.047×10^{3}
30,000	5.682		90	434.8	$2.336 \times 10^{+}$	673.6	. 3185	9.012×10^{-4}	. 3442	2.759×10^{28}	$1.380 \times 10^{\circ}$	8.425×10^{-7}	$1.638 \times 10^{\circ}$	1.896×10^{-8}	7.278×10^{8}	1.025×10^{2}
32,808	6.214	31.987	28.	423.9	2.278×10^{4}	596.6	. 2821	8.187×10^{-4}	. 3581	2.507×10^{23}	1.362×10^{9}	9.273×10^{-7}	1.469×10^{9}	2.086×10^{-8}	6.529×10^{8}	1.012×10^{7}
35,000	629	31.980	8.9	5.0	$2.230 \times 10^{+}$	541.4	. 2560	7.589×10^{-4}	. 3320	2.324×10^{23}	1.348×10^{5}	1.000×10^{-6}	1.347×10^{8}	2.251×10^{-8}	5.988×10^{8}	1.001×10^{8}
40,000	7.576	31.9	28.90	394.6	2.122×10^{4}	430.5	. 2036	6.348×10^{-4}	. 2777	1.944×10^{23}	$1.314 \times 10^{\text {b }}$	1.196×10^{-6}	1.099×10^{4}	2.691×10^{-6}	4.884×10^{2}	9.762 $\times 10^{2}$
45,000	8,523	31.950	28.90	374.3	2.014×10^{4}	338.2	1599	5.256×10^{-4}	. 2299	1.609×10^{23}	1.280×10^{3}	1.444×10^{-6}	$8.861 \times 10^{\circ}$	3.250×10^{-6}	3.938×10^{8}	9.508×10^{8}
50,000	9.4	31.934	28.90	353.9	1.905×10^{4}	262.2	. 1240	4.309×10^{-4}	. 1885	1.319×10^{28}	1.245×10^{5}	1.762×10^{-8}	7.065×10^{8}	3.964×10^{-6}	3.140×10^{8}	9.246×10^{2}
52,493	9.942	31.	28	343.8	1.851×10^{4}	229.7	1086	3.887×10^{-6}	. 1700	1.190×10^{28}	1.227×10^{3}	1.953×10^{-6}	6.280×10^{8}	4.395×10^{-1}	2.791×10^{0}	9.112×10^{2}
55,000	10.417	31.919	28.90	347	1.873×10^{4}	200.8	9.494×10^{-12}	3.359×10^{-4}	1469	1.029×10^{29}	1.234×10^{8}	2.260×10^{-4}	5.459×10^{8}	5.085×10^{-6}	$2.426 \times 10^{\text {a }}$	9.164×10^{8}
60,000	. 364	31.904	28.90	355.6	1.916×10^{4}	154,3	. 296×10^{-2}	2.525×10^{-6}	1104	7.730×10^{82}	1.248×10^{3}	3.007×10^{-8}	4.149×10^{8}	6.766×10^{-6}	1.844×10^{8}	9.267×10^{2}
65,000	12.311	31	28.50	363.4	1.959×10^{4}	119.3	5.640×10^{-2}	1.910×10^{-4}	8.352×10^{-8}	5.847×10^{78}	1.261×10^{3}	3.976×10^{-6}	3.172×10^{8}	8.946×10^{-8}	$1.410 \times 10^{\circ}$	9.368×10^{2}
70,000	13.258	31.873	28.90	371.2	2.002×10^{4}	92.74	4.385×10^{-3}	1.453×10^{-4}	6.356×10^{-8}	4.450×10^{82}	1.275×10^{3}	5.224×10^{-8}	2.440×10^{6}	1.176×10^{-8}	1.084×10^{8}	9.469×10^{2}
75,000	14.205	31.858	28	379.1	2.045×10^{4}	72.50	3.428×10^{-8}	1.113×10^{-8}	4.867×10^{-8}	$3.407 \times 10^{\text {82 }}$	1.288×10^{3}	6.824×10^{-8}	1.888×10^{8}	1.535×10^{-1}	8.390×10^{2}	9.568×10^{2}
80,000	15.152	31.842	28.90	386.9	2.089×10^{4}	. 97	2.694×10^{-8}	8.567×10^{-8}	3.747×10^{-2}	2.623×10^{22}	1.301×10^{9}	8.862×10^{-6}	$1.468 \times 10^{\circ}$	1.994×10^{-8}	6.527 $\times 10^{\prime}$	9.667×10^{2}
85,000	98	31.827	28.90	94.	2.133×10^{4}	45.03	2.129×10^{-9}	6.636×10^{-6}	2.903×10^{-8}	2.032×10^{22}	1.314×10^{3}	1.144×10^{-8}	1.149×10^{6}	2.574×10^{-8}	$5.100^{*} \times 10^{2}$. $764 \times 10^{*}$
90,000	17.045	31.812	28.90	402.6	2.175×10^{4}	35.72	1.689×10^{-3}	5.162×10^{-6}	2.258×10^{-2}	1.580×10^{23}	1.328×10^{2}	1.471×10^{-8}	9.025×10^{7}	3.310×10^{-8}	4.011×10^{7}	9.860×10^{17}
95,000	17.98	31.797	28.90	,	2.219×10^{4}	28.48	1.347×10^{-2}	4.037×10^{-8}	1.766×10^{-8}	1.236×10^{28}	1.340×10^{3}	1.880×10^{-8}	7.128×10^{7}	4.231×10^{-5}	3.168×10^{7}	$9.956 \times 10^{*}$
98,424	18.641	31.78	28.90	4.15 .8	2.249×10^{4}	24.46	1.156×10^{-2}	3.422×10^{-5}	1.497×10^{-8}	1.048×10^{22}	1.349×10^{5}	2.218×10^{-8}	6.081×10^{7}	4.992×10^{-8}	2.703×10^{7}	1.002×10^{8}
100,000	18.939	31.782	28.90	422.2	2.278×10^{4}	22.82	1.079×10^{-2}	3.152×10^{-8}	1.378×10^{-8}	9.650×10^{21}	1.358×10^{3}	2.409×10^{-8}	5.636×10^{7}	5.420×10^{-8}	2.505×10^{7}	1.009×10^{3}
105,000	19.886	31.766	28.90	438.2	2.371×104	18.41	8.703×10^{-3}	2.449×10^{-8}	1.071×10^{-2}	7.500×10^{21}	1.385×10^{3}	3.100×10^{-8}	4.468×10^{7}	6.974×10^{-8}	1.986×10^{r}	1.029×10^{2}
110,000	20.833	31.751	28.90	455.2	2.464×10^{4}	14.97	7.080×10^{-9}	1.914×10^{-6}	8.371×10^{-3}	5.860×10^{21}	1.412×10^{3}	3.967×10^{-8}	3.558×10^{7}	8.926×10^{-8}	1.581×10^{7}	1.048×10^{4}
115,000	21.780	31.736	28.90	472.2	2.557×10^{6}	12.28	5.804×10^{-3}	1.512×10^{-8}	6.616×10^{-8}	4.631×10^{21}	1.438×10^{3}	5.020×10^{-8}	2.864×10^{7}	1.129×10^{-6}	1.273×10^{7}	1.068×10^{4}
120,000	22.727	31.721	28.90	489.2	2.651×10^{4}	10.14	4.793×10^{-8}	1.206×10^{-8}	5.273×10^{-8}	3.691×10^{81}	1.463×10^{8}	6.297×10^{-8}	2.324×10^{7}	1.417×10^{-4}	1.033×10^{7}	1.087×10^{8}
125,000	23.674	31.706	28.90	506.2	2.744×10^{4}	8.428	3.985×10^{-3}	9.688×10^{-6}	4.237×10^{-2}	2.966×10^{21}	1.488×10^{9}	7.838×10^{-8}	1.899×10^{7}	1.764×10^{-4}	$8.441 \times 10^{\circ}$	1.106×10^{9}
130,000	24.621	31.691	28.90	523.2	2.838×10^{4}	2.051	3.334×10^{-5}	7.840×10^{-9}	3.429×10^{-3}	2.401×10^{81}	1.513×10^{2}	9.688×10^{-8}	1.563×10^{7}	2.179×10^{-1}	6.946×10^{8}	1.124 $\times 10^{10}$
135,000	25.568	31.671	28.90	540.2	2.932×10^{4}	5.934	2.806×10^{-3}	6.390×10^{-6}	2.795×10^{-5}	1.957×10^{41}	1.538×10^{3}	1.188×10^{-4}	1.294×10^{7}	2.673×10^{-4}	5.752×10^{8}	1.142×10^{4}
140,000	26,515	31.660	28.90	557.2	3.025×10^{4}	5.021	2.374×10^{-3}	5.243×10^{-6}	2.293×10^{-3}	1.605×10^{41}	1.562×10^{3}	1.448×10^{-4}	1.078×10^{7}	3.258×10^{-4}	4.793×10^{6}	1.160×10^{8}
145,000	27.462	31.64	28.90	574	3.118×10^{4}	4.271	2.020×10^{-3}	4.327×10^{-5}	1.893×10^{-3}	1.325×10^{21}	1.585×10^{3}	1.754×10^{-1}	9.037×10^{6}	3.947×10^{-6}	4.016×10^{80}	1.178×10^{2}
150,000	23.409	31.630	28.90	591.2	3.213×10^{4}	3.651	1.726×10^{-3}	3.592×10^{-6}	1.571×10^{-8}	$1.100 \times 10^{\text {23 }}$	1.609×10^{3}	2.113×10^{-4}	7.612×10^{8}	4.755×10^{-4}	$3.383 \times 10^{\circ}$	1.195×10^{2}
155,000	29.356	31.615	28.90	608.2	3.307×10^{4}	3.135	1.482×10^{-3}	2.999×10^{-6}	1.312×10^{-8}	9.182×10^{90}	1.632×10^{5}	2.532×10^{-6}	6.445×10^{6}	5.696×10^{-4}	2.864×10^{6}	1.212×10^{7}
160,000	30.303	31.600	28.90	625.3	3.401×10^{4}	2.704	1.279×10^{-8}	2.516×10^{-8}	1.101×10^{-7}	7.705×10^{20}	1.654×10^{9}	3.017×10^{-4}	5.484×10^{6}	6.788×10^{-4}	2.437×10^{9}	$1.229 \times 10^{\frac{1}{4}}$
164,040	31.058	31.588	28.90	639.0	3.477×10^{4}	2.407	1.138×10^{-3}	2.191×10^{-0}	9.584×10^{-4}	6.709×10^{00}	1.672×10^{3}	3.465×10^{-4}	4,827 $\times 10^{5}$	7.796×10^{-4}	2.145×10^{8}	1.242×10^{8}
165,000	31.250	31.585	28.90	639.0	3.478×10^{4}	2.341	1.107×10^{-7}	2.132×10^{-5}	9.324×10^{-4}	6.527×10^{20}	1.672×10^{5}	3.562×10^{-4}	4.696×10^{6}	8.013×10^{-4}	$2.087 \times 10^{\circ}$	1.242×10^{8}
170,000	32.197	31.570	28.90	639.0	3.479×10^{4}	2.028	9.590×10^{-4}	$1.846 \times 10^{\circ} \mathrm{t}$	8.077×10^{-4}	5.654×10^{20}	1.672×10^{3}	4.112×10^{-4}	4.068×10^{6}	9.251×10^{-4}	1.808×10^{8}	1.242×10^{5}
175,000	33.144	31.555	28.90	639.0	3.481×10^{4}	1.757	8.295×10^{-4}	1.600×10^{-6}	6.998×10^{-4}	4.899×10^{40}	1.672×10^{3}	4.745×10^{-6}	3.524×10^{6}	1.068×10^{-3}	1.566×10^{6}	1.242×10^{8}
180,000	34.091	31.540	28.90	639.0	3.483×10^{6}	1.523	7.200×10^{-4}	$1.386 \times 10^{-*}$	6.067×10^{-4}	$6.245 \times 10^{* 0}$	1.672×10^{3}	5.476×10^{-4}	3.054×10^{8}	1.232×10^{-3}	1.357×10^{6}	1.242×10^{8}
185,000	35.038	31.525	28.90	639.0	3.484×10^{4}	1.320	6.239×10^{-6}	1.201×10^{-8}	5.255×10^{-4}	3.679×10^{88}	1.672×10^{8}	6.319 $\times 10^{-4}$	2.646×10^{8}	1.422×10^{-3}	1.176×10^{8}	1.242×10^{8}
190,000	35.985	31.510	28.90	639.0	3.486×10^{4}	1.144	5.408×10^{-4}	1.041×10^{-5}	4.555×10^{-4}	$3.188 \times 10^{\circ 0}$	1.672×10^{1}	7.291×10^{-4}	$2.294 \times 10^{\circ}$	1.640×10^{-3}	1.020×10^{6}	$1.242 \times 10^{\prime \prime}$
195,000	36.932	31.49	28.9	639.	$\left.3.488 \times 10^{4}\right]$	9914	4.688×10^{-4}	9.026×10^{-7}	3.948×10^{-4}	2.764×10^{80}	$\underline{1.672 \times 10^{8}}$	8.411×10^{-4}	1.988×10^{6}	1.892×10^{-4}	8.837×10^{8}	1.242×10^{8}

Table 11 (Cont'd)
Latitude, 0°. Engineering Units. $p_{a}=21151 \mathrm{~b} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Height		$\left\|\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ g_{z}^{z} \\ \mathrm{ft} / \mathrm{sec}^{z} \end{array}\right\|$		$\begin{gathered} \text { Temp } \\ T \\ T \end{gathered}$	Scale Height H ft	Pressure $\stackrel{\rho}{\mathrm{lb} / \mathrm{ft}^{\prime 2}}$	Presgure Retiop / ρ_{σ}	Density slug/ft ${ }^{3}$	Density Ratio ρp_{a}	$\begin{array}{\|c\|} \text { Nunber } \\ \text { Density } \\ n \\ \text { perticles } / \mathrm{ft}^{\mathrm{a}} \end{array}$	$\begin{array}{\|c\|} \text { Mean Parti- } \\ \text { cle Speed } \\ \vdots \\ \mathrm{ft} / \mathrm{sec} \\ \hline \end{array}$	$d=3 \times 10^{-8} \mathrm{~cm}$		${ }^{\text {d }} \cdot 2 \times 10^{-8} \mathrm{~cm}$		Speed of Sound $\mathrm{ft} / \mathrm{sec}$	
		$\begin{aligned} & \text { Mean Free } \\ & \text { Fath } \end{aligned}$										$\left\lvert\, \begin{gathered} \text { Men Colli- } \\ \text { ion Freq } \\ y \end{gathered}\right.$	$\begin{gathered} \text { Mean Free } \\ \text { Path } \\ L \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \end{gathered}\right.$			
$f t$	f																
	37			28.90	639	3.10×10	405	7×10^{-2}	8.562×10^{-7}	3.745×10^{-4}	2.622×10^{180}	1.672×10^{3}	8.8	1.886×10^{6}	1.995×10^{-3}	8.383×10^{8}	
200	37	31.	28.90	62	3.429×10^{4}	. 8586	4.060×10^{-4}	7.955×10^{-7}	3.480×10^{-4}	2.436×10^{816}	1.658×10^{2}	9.544×10^{-4}	1.737×10^{6}	2.147×10^{-3}	7.720×10^{0}	1.232×10^{3}	
205.0	38.	31.46	28.90	51.	3.335×10^{4}	7408	3.502×10^{-4}	7.060×10^{-7}	3.088×10^{-4}	2.162×10^{20}	1.635×10^{3}	75×10	. $520 \times 10^{\circ}$	$2.419 \times 10^{-}$	6.756×10^{0}	1.214×10^{3}	
210,000	39.773	31.450	28.90	592.9	3.241×10^{4}	. 6365	3.009×10^{-4}	6.245×10^{-7}	2.732×10^{-6}	1.912×10^{20}	$1.611 \times 10^{3} 1$	1.216×10^{-5}	1.325×10^{6}	2.735×10^{-3}	5.890×10^{6}	1.197×10^{5}	
215,000	40.720	31.4	28.90	575	$3.146 \times$	444	2.574×10^{-4}	5.505×10^{-7}	2.408	1.666×10^{90}	1.587×10^{8}	1.379×10^{-3}	1.151	$3.103 \times$	5.114×10^{5}	1.179×10^{8}	
220,000	41.667	31.420	90		. $52 \times$. 4635	$2.192 \times$	4.834×10^{-7}	2.114×10^{-1}	1.480×10^{20}	1.563×10^{3}	1.571×10^{-1}	$9.948 \times 10^{\circ}$	3.534×10	4.422×10^{6}	1.161×10^{3}	
225,000				540.3	2.957×10^{4}	. 3927	1.857×10^{-6}	4.228×10^{-77}	1.849×10^{-4}	1.294×10^{20}	1.538×10^{3}	1.796×10^{-1}	8.564×10^{3}	4.040×10	3.806×10^{8}	10^{3}	
	43.5	31.38	28.90	522.8	2.863×10^{4}	. 3309	1.564×10^{-4}	3.682×10^{-7}	1.611×10^{-4}	1.127×10^{20}	1.513×10^{3}	2.062×10^{-3}	$7.336 \times 10^{\circ}$	4.639×10	$3.261 \times 10^{\circ}$	1.124×10^{3}	
235,000	44.50	31.375	28.90	505.3	2.768×10^{4}	. 2772	1.311×10^{-4}	3.159×10^{-7}	1.396×10^{-4}	9.774×10^{18}	$1.487 \times 10^{3} 12$	2.378×10^{-3}	6. $253 \times 10^{\circ}$	5.351×10^{-3}	2.779×10^{8}	1.105×10^{9}	
240.000	45.455	31.360	28.90	7.	2.673×10^{4}	. 2309	1.092×10^{-6}	$2.754 \times 10^{-}$	1.205×10^{-4}	8.433×10^{10}	1.461×10^{3}	2.757×10^{-3}	5.301×10^{6}	6.202×10^{-3}	2.356×10^{8}	1.085×10^{2}	
245,000	46.402	31.346	. 90	0.2	2.579×10^{4}	. 1910	9.033×10^{-8}	2.364×10^{-7}	1.034×10^{-4}	7.237×10^{16}	1.435×10^{3}	3.212×10^{-2}	4.466×10	7.227×10^{-3}	$1.985 \times 10^{\circ}$	1.066×10^{3}	
250,000	47.348	331	28.90	. 1	2.484×10	1570	1.421×10^{-6}	2.017×10^{-7}	8.823×10^{-8}	6.176×10^{19}	1.408×10^{3}	3.764 $\times 1.10$	3.740 $\times 10^{3}$	8.469×10	1.662×10^{8}	$1.045 \times 10^{\text {a }}$	
	48.295	31.316		5.2	2.389×10^{4}	1280	6.051×10^{-8}	1.711×10^{-1}	7.484×10^{-6}	5.239×10^{18}	1.380×10^{3}	4.437×10^{-2}	$3.110 \times 10^{\circ}$	9.984×10	1.382×10^{8}	1.025×10^{3}	
255,902		31.31		432.0	2.371×10^{4}	. 1233	5.828×10^{-8}	1.660×10^{-7}	7.260×10^{-8}	5.082×10^{18}	1.375×10^{8}	4.574 $\times 10^{-3}$	3.006×10^{5}	1.029×10^{-2}	1.33	1.021×10^{3}	
260,000	49,242	31.301	28.90	432.0	2.372×10^{4}	1037	4.902×10^{-5}	1.397×10^{-7}	6.110×10^{-8}	4.277×10^{18}	$1.375 \times 10^{3} 5$	5.435×10^{-3}	2.530×10^{6}	1.223×10^{-2}	1.124×10^{5}	. 021×10^{3}	
265,000	50.189	31.286	28.90	2.0	2.373×10^{4}	8.405×10^{-8}	3.972×10^{-5}	1.132×10^{-7}	4.951×10^{-8}	3.465×10^{18}	1.375×10^{5}	6.707 $\times 10^{-3}$	2.050×10^{6}	1.509×10^{-8}	9.112×10^{4}	1.021×10^{2}	
270,000	51.136	31.271	90	432.0	$2.374 \times 10^{+}$	6:813 $\times 10^{-3}$	3.220×10^{-8}	9.174×10^{-8}	4.013×10^{-5}	2.809×10^{19}	1.375×10^{3}	8.276×10^{-2}	1.662×10^{6}	1.862×10^{-3}	7.385×10^{4}	1.021×10^{3}	
272,306	51.573	254	28.90	2.0	2.375×10^{4}	6.184×10^{-2}	2.922×10^{-8}	8.327×10^{-8}	3.642×10^{-5}	2.550×10^{18}	1.375×10^{5}	$\underline{9.117 \times 10^{-}}$	$1.508 \times 10^{\circ}$	2.051×10^{-2}	6.704×10^{4}	1.021×10^{4}	
275,000	52.083	. 256	28.79	437.3	2.414×10^{4}	5.528×10^{-8}	2.612×10^{-6}	7.326×10^{-3}	3.205×10^{-8}	2.252×10^{18}	1.386×10^{9}	$1.032 \times 10^{-}$	1.343×10^{6}	2.323×10^{-8}	5.968×10^{4}	1.030×10^{3}	
280,	53	31.242	28	447.2	487	4.511×10^{-2}	2.132×10^{-8}	5.807×10^{-8}	2.540×10^{-8}	1.798×10^{18}	1.407 $\times 10^{4}$	1.293×10^{-2}	1.088×10^{8}	2.910×10^{-2}	4. 834×10^{4}	$1.046 \times 10^{\circ}$	
285,000	53.977	31.227	28	457.0	2.561×10^{4}	3.703×10^{-8}	1.750×10^{-8}	$\frac{4.630 \times 10^{-3}}{3}$	2.025×10^{-8}	$\frac{1.443 \times 10^{18}}{10}$	$1.427 \times 10^{3} 11$	1.611×10^{-2}	8.861×10^{4}	3.624×10^{-2}			
290,000	54.924	31.21	.19	466.	2.636×10^{4}	3.057×10^{-2}	1.445×10^{-8}	3.715×10^{-1}	1.625×10^{-8}	1.166×10^{18}	1.448×10^{5}	1.993×10^{-1}	7.263×10^{4}	4.484×10^{-72}	3.228×10^{4}	1.078×10^{8}	
295,000	55.871	19	, 98	476.8	2.713×10^{4}	$2.538 \times 10^{* 8}$	1.199×10^{-8}	2.998×10^{-3}	1.312×10^{-8}	9.482×10^{18}	1.468×10^{2}	2.452×10^{-2}	$5.988 \times 10^{*}$	5.516×10^{-8}	$2.661 \times 10^{6} 1$	1.094×10^{3}	
300,000	818	31.182	27.78	486.6	2.790×10^{4}	2.117×10^{-2}	$1.001 \times 10^{-\prime \prime}$	2.434×10^{-8}	1.064×10^{-8}	7.751×10^{18}	1.488×10^{3}	2.999×10^{-2}	4.963×10^{4}	6.748×10^{-4}	2.205×10^{4}	. 111×10^{3}	
305,000	57.765	31.168	58	\%.	2.869×10^{4}	1.776×10^{-2}	8.391×10^{-8}	1.986×10^{-1}	8.685×10^{-6}	6.371×10^{18}	1.509×10^{8}	3.649×10^{-2}	4.136×10^{4}	8.210×10^{-2}	1.838×10^{2}	1.127×10^{3}	
		153	27.38	506.3	2.949×10^{4}	1.496×10^{-8}	7.071×10^{-8}	1.629×10^{-8}	7.124×10^{-8}	5.264×10^{18}	1.530×10^{2}	4.416×10^{-4}	3.464×10^{4}	$9.936 \times 10^{-3} 1$	1.539×10^{4}	1.143×10^{3}	
315,000	39.659	31.138	27.18	516.2	3.030×10^{4}	1.267×10^{-2}	5.986×10^{-8}	$\underline{1.342 \times 10^{-8}}$	5.872×10^{-6}	4.371×10^{18}	$\frac{1.550 \times 10^{3}}{}$	5.318×10^{-2}	2.915×10^{4}	. 196×10	1.296×10^{4}	$1,159 \times 10^{8}$	
320,000	60.606	31.123	26.97	526.1	3.113×1.0^{4}	1.077×10^{-3}	5.089×10^{-8}	1.112×10^{-6}	4.862×10^{-6}	3.646×10^{18}	1.571×10^{3}	6.375 7.10^{-2}	2.464×10^{2}	1.434×10^{-3}	1.095×1	1.176 $\times 10^{3}$	
325,000	61.553	31.109	26.77	535.9	3.197×10^{4}	9.196×10^{-3}	4.346×10^{-6}	9.248 ${ }^{10^{-8}}$	4.045×10^{-8}	3.057×10^{18}	1.591×10^{3}	7.605 $\times 10^{-8}$	$2.092 \times 10^{+}$	$1.711 \times 10^{+3}$	9.300×10	1.192×10^{3}	
330,00	62	31	26.57	54	3.282 \times	7.886×10^{-3}	$\frac{3.727 \times 10^{-8}}{30}$	7.729×10^{-8}	3.388×10^{-8}	2.574×10^{18}	1.612×10^{3}	9.032×10^{-8}	1,785 $\times 10^{4}$	$2.032 \times 10^{-}$	7.932×10^{3}	1.208×10^{3}	
33		31.07	26.37	555.6	3.368×10^{4}	6.789×10^{-7}	3.208×10^{-6}	5.485×10^{-1}	2.837×10^{-8}	2.176×10^{12}	1.633×10^{3}	$1.068 \times 10^{\circ}$	1.528	$2.403 \times 10^{\circ}$	6.794 $\times 10^{3}$	1.225×10^{3}	
340,000					3.456×10^{4}	5.867×10^{-8}	2.773×10^{-8}	5.465×10^{-8}	2.350×10^{-8}	1.848×10^{18}	1.654×10^{5}	1.256×10^{-1}	$1.314 \times$	2.830×10^{-1}	5.842×10^{3}	1.242×10^{3}	
345,000	65.341	31.050	25.97	575.4	3.545×10^{4}	5.089×10^{-3}	2.405×10^{-8}	4.623×10^{-8}	$\frac{2.022 \times 10^{-6}}{1.717}$	1.575×10^{18}	1.674×10^{3}	$\frac{1.476 \times 10^{-2}}{1724 \times 10^{-1}}$	$1.135 \times$	3.320×10	5.043×10^{3}	1.258×10^{3}	
350,000	66.288	31.035	25.76	585.2	3.636×10^{4}	$4.430 \times 10^{+3}$	2.093×10^{-6}	3.926×10^{-8}	1.717×10^{-6}	1.348×10^{18}	1.695×10^{5}	1.724×10^{-1}	$9.832 \times 10^{3} 3$	$3.879 \times 10^{-}$	4.330×10^{7}	1.275×10^{5}	
355,000	67.	31.020	56	595.1	3.728×10^{6}	3.870×10^{-3}	1.829×10^{-8}	3.346×10^{-8}	1.464×10^{-6}	1.158×10^{18}	1.716×10^{4}	2.007×10^{-1}	8.550×10^{3}	4.516×10	3.800×10	$1.292 \times 10^{*}$	
360,000	68	31.	25.36	604.9	3.822×10^{4}	3.391×10^{-3}	1.603×10^{-8}	2.862×10^{-8}	1.252×10^{-8}	9.986×10^{17}	$1.737 \times 10^{3} 12$	2.328×10^{-1}	$7.450 \times 10^{4} 5$	5.238×10^{-1}	$3.31 .6 \times 10^{2}$	1.308×10^{3}	
365 ,	69	30.991	25	614.8	3.917×10^{4}	2.982×10^{-8}	1.409×10^{-6}	$2.456 \times 10^{-}$	1.074×10^{-6}	8.640×10^{17}	$1.758 \times 10^{3} 2$	2.691×10^{-1}	$6.535 \times 10^{2} 6$	$6.054 \times 10^{-}$	2.904×10^{2}	1.325×10^{7}	
370,000	70.076	30	24.96	624.7	4.014×10^{4}	2.630×10^{-3}	1.243×10^{-6}	2.115×10^{-6}	9.252×10^{-7}	7.500×10^{17}	1.779×10^{3}	3.099×10^{-1}	5.741×10^{2}	6.974×10^{-1}	$2.552 \times 10^{*}$	1.342×10^{3}	
375,000	72.023	30.96	24.75	634.5	4.113×10^{4}	2.327×10^{-3}	. 100×10^{-8}	. 828×10^{-9}	7.994×10^{-7}	6.533×10^{17}	1.801×10^{2}	2.558×10^{-1}	5.060×10^{3} 8	$8.006 \times 10^{-1} / 2$	2.249×10^{5}	1.360×10^{7}	
380,00	71	,	24.55		4.213×10^{4}	2.065×10^{-3}	9.758×10^{-7}	1.584×10^{-8}	6.927×10^{-7}	5.708×10^{17}	1.822×10^{2}	4.073×10^{-1}	$4.474 \times 10^{3} 9$	9.164×10^{-1}	1.989×10^{3}	1.377×10^{3}	
385	72	,	24.35	654.2	4.315×10^{4}	1.837×10^{-8}	8.687×10^{-7}	1.377×10^{-8}	6.021×10^{-7}	5. 002×10^{17}	1.844×10^{8}	4.647×10^{-2}	$3.967 \times 10^{*}$	1.046	1.763×10^{3}	1.394×10^{3}	
390,000	73.864	30.918	24,15	664.1	$4.418 \times 10^{+}$	1.639×10^{-3}	7.751×10^{-7}	1.200×10^{-8}	5.249×10^{-7}	4.397×10^{17}	1.865×10^{3}	5.287×10^{-1}	3.528×10^{5}	1.190	1.568×10^{3}	1.412×10^{3}	
393,696	${ }^{74.564}$	907	24.00	671.4	4.496×10^{4}	1.469×10^{-5}	6.944×10^{-7}	1.057×10^{-8}	4. 622×10^{-7}	3.896×10^{17}	1.881×10^{5}	5.966×10^{-1}	3.153×10^{3}	1.342	1.401×10^{4}	1.424×10^{2}	
395,000	74.811	30.904	424.00	675.0	$4.521 \times 10^{+}$	1.427×10^{-8}	$6.746 \times 10^{* 7}$	1.021×10^{-9}	4.466×10^{77}	3.688×10^{17}	1.886×10^{8}	6.174 $\times 10^{-1}$	3.055×10^{6}	1.389	$1.358 \times 10^{\text {a }}$	1.428×10^{8}	
400,000	75.	30.8	24.		$\left\|4.617 \times 10^{4}\right\|$	1.279×10^{-3}	6.047 $\times 10^{-7}$	8.968×10^{-1}	3.923×10^{-7}	3.372×10^{17}	1.906×10^{8}	7.030 $\left.\times 10^{-1}\right]$	2.711×10^{3}]	1.582	$1.205 \times 10^{\text {a }}$	1.443×10^{3}	

Table 11 (Cont'd)
Latitude, 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-8} \mathrm{slug} / \mathrm{ft}^{3}$

		$\left\|\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ g_{g^{\prime \prime}} \\ \mathrm{ft} / \mathrm{sec}^{8} \end{array}\right\|$	MeanMol Wem	$\begin{array}{\|c\|} \text { Temp } \\ \tau \\ T \end{array}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \text { Ht } \end{gathered}$	Pressure$1 \mathrm{p} / \mathrm{ft}^{*}$		Pressure Fhatio p / p_{a}		Density $\stackrel{\rho}{\text { slug } / \mathrm{ft}^{*}}$		Density Ratio ρ / ρ_{a}				Men Particle Speed $\mathrm{ft} / \mathrm{sec}$		* $3 \times$	$10^{-8 \mathrm{~cm}}$			$d=$	10^{-9}		Speed of Sound $\mathrm{ft} / \mathrm{sec}$
Height h								Mean FreePathLft				$\begin{gathered} \text { Mem Colli- } \\ \text { sion Freq } \\ \nu /{ }^{2} \\ 1 / \mathrm{sec} \end{gathered}$				Mean FreePathLft		$\begin{gathered} \text { Mesm Colli- } \\ \text { sicn Freq } \\ 1 / \mathrm{sec} \end{gathered}$							
$f t$	${ }^{\text {mi }}$																								
4.500×10^{8}	85.23	30.74	24.00	228	5.580×10^{4}	4.80	$\times 10^{-4}$	2.27	$\times 10^{+8}$	2.80	$\times 10^{\circ}$	1.22	$\times 10^{-7}$	1.03	$\times 10^{17}$	2.090×10^{3}	2.25		9.28	$\times 10^{2}$	5.07		4.13	$\times 10^{2}$. 583×10^{4}
5.000×10^{5}	94.70	30.500	24.00	968.6	6.552×10^{4}	2.12	$\times 10^{-4}$	1.00	$\times 10^{-7}$	1.06	$\times 10^{-10}$	4.64	$\times 10^{-8}$	3.91	$\times 10^{18}$	$2.260 \times 10^{*}$	5.95		3.80	$\times 10^{\text {a }}$	1.34	4	1.69	$\times 10^{*}$, 711×10^{4}
5.280×10^{5}	100.0	30.520	24.00	1047	$7.100 \times 10^{*}$	1.40	$\times 10^{-4}$	6.62	$\times 10^{-8}$	6.45	$\times 10^{-11}$	2.82	$\times 10^{-0}$	2.38	$\times 10^{10}$	2.349×10^{4}	9.77		2.40	$\times 10^{2}$	2.2	+ 10	1.07	+10	.779 $\times 10^{3}$
5.500×10^{8}	104.2	30.457	24.00	1108	$7.533 \times 10^{+}$	1.04	$\times 10^{-4}$	4.92	$\times 10^{-8}$	4.53	$\times 10^{-11}$	1.98	$\times 10^{-8}$	1.67	$\times 10^{18}$	2.417×10^{2}	1.39	$\times 10$	1.74	$\times 10^{2}$	3.1	$\times 10$	7.72	10	
6.000×10^{8}	113.6	30.315	24.00	1248	8.523×10^{4}	5.57	$\times 10^{-6}$	2.63	$\times 10^{-8}$	2.15	$\times 10^{-12}$	9.41	$\times 10^{-4}$	7.93	$\times 10^{18}$	2.565×10^{8}	2.93	$\times 10$	8.75	$\times 10$	6.60	× 10	3.8	+ 10	
$6.500 \times 10^{\circ}$	123.1	30.174	24.00	1388	9,522 $\times 10^{4}$	3.20	$\times 10^{-8}$	1.51	$\times 10^{-8}$	1.11	$\times 10^{* \times 1}$	4.86	+109	4.09	$\times 10^{18}$	2.705×10^{8}	5.68	$\times 10$	4.76	$\times 10$	1.28	- $\times 10^{*}$	2.12	$\times 10$	
7.000×10^{8}	132.6	30.033	24.00	1528	1.053×10^{8}	1.94	$\times 10^{-8}$	9.17	$\times 10^{-1}$	6.13	$\times 10^{-18}$	2.68	$\times 10^{-9}$	2.26	$\times 10^{18}$	2.838×10^{3}	1.03	$\times 10^{2}$	2.76	- 10	2.31	¢ $\times 10^{2}$	1.23	$\times 10$	
$7.500 \times 10^{\circ}$	142.0	29.894	24.00	1668	1.155×10^{8}	1.24	$\times 10^{-3}$	5.86	$\times 10^{-9}$	3.59	$\times 10^{-12}$	1.57	$\times 10^{-5}$	1.32	$\times 10^{18}$	2.545×10^{3}	1.76	$\times 10^{2}$	1.69	$\times 10$	3.95	5×10^{8}	7.50		
8.000×10^{8}	151.5	29.756	24.00	1807	$1.257 \times 10^{\circ}$	8.16	$\times 10^{-8}$	3.86	$\times 10^{-8}$	2.18	$\times 10^{-18}$	9.54	$\times 10^{-10}$	8.04	$\times 10^{14}$	3.087×10^{3}	2.89	$\times 10^{2}$	1.07	+10	6.51	+ 10	4.74		
8.500×10^{8}	161.0	29.619	24.00	1947	1.361×10^{8}	5.57	× $\times 10^{-8}$	2.63	$\times 10^{-8}$	1.38	$\times 10^{-19}$	6.04	$\times 10^{-10}$	5.09	$\times 10^{14}$	3.204×10^{3}	4.57	$\times 10^{2}$	7.01		1.03	3×10^{3}	${ }^{3.12}$		
9.000×10^{8}	170.4	29.482	24.00	2087	1.465×10^{8}	3.91	$\times 10^{-8}$	1.85	$\times 10^{-9}$	9.05	$\times 10^{-13}$	3.96	$\times 10^{-10}$	3.34	$\times 10^{14}$	3.313×10^{3}	6.97	$\times 10^{*}$	4.76		1.57	7×10^{8}	2.12		
$9.500 \times 10^{\circ}$	179.9	29.347	24.00	2227	1.571×10^{8}	2.81	$\times 10^{-8}$	1.33	$\times 10^{-9}$	6.09	$\times 10^{-13}$	2.66	$\times 10^{-10}$	2.25	$\times 10^{24}$	3.426×10^{2}	1.04	$\times 10^{8}$	3.31		2.33	3×10^{4}	1.47		
$1.000 \times 10^{\circ}$	189.4	29.212	24.00	2367	1.677×10^{5}	2.07	$\times 10^{-6}$	9.79	$\times 10^{-10}$	4.23	$\times 10^{-12}$	1.85	$\times 10^{-10}$	1.56	$\times 10^{14}$	3.532×10^{3}	1.49	$\times 10^{2}$	2.37		3.35	5×10^{2}	1.05		
$1.050 \times 10^{*}$	198.9	29.079	24.00	2507	1.784×10^{5}	1.55	$\times 10^{-9}$	7.33	$\times 10^{-10}$	2.99	$\times 10^{-18}$	1.31	$\times 10^{-10}$	1.10	$\times 10^{14}$	3.635×10^{4}	2.11	$\times 10^{3}$	1.72		4.74	+ ${ }^{10^{3}}$	7.66	$\times 10^{-3}$	
$1.055 \times 10^{\circ}$	200.0	29,063	24,00	2523	1.797×10^{8}	1,50	$\times 10^{-8}$	1.09	$\times 10^{-10}$	2.87	$\times 10^{-18}$	1.26	$\times 10^{-10}$	1.06	$\times 1{ }^{14}$	3.647×10^{5}	2.20	$\times 10^{9}$	1.66		4.94	+10 ${ }^{4}$	7.38	+10-2	
1.100×10^{8}	208.3	28.946	24.00	2646	1.892×10^{8}	1.18	$\times 10^{-8}$	5.58	$\times 10^{-10}$	2.15	$\times 10^{* 13}$	9.41	$\times 10^{-12}$	7.93	$\times 10^{18}$	3.735×10^{3}	2.93	$\times 10^{3}$	1.27		6.60	0×10^{2}	5.66	$\times 10^{-1}$	
$1.150 \times 10^{\circ}$	217.8	28.814	24.00	2786	2.001×10^{5}	9.12	$\times 10^{-7}$	4.31	$\times 10^{-10}$	1.58	$\times 10^{-12}$	6.91	$\times 10^{-11}$	5.83	$\times 10^{13}$	3.832×10^{2}	3.99	$\times 10^{2}$	9.50	$\times 10{ }^{-}$	8.98	$8 \times 10^{*}$	4.27	$\times 10^{-2}$	
1.200×10^{8}	227.3	28.684	24.00	2926	$2.111 \times 10^{\circ}$	7.15	$\times 10^{-7}$	3.38	$\times 10^{-10}$	1.18	$\times 10^{-13}$	5.16	$\times 10^{-11}$	4.35	$\times 10^{18}$	3.927×10^{3}	5.34	$\times 10^{2}$	7.35	$\times 10^{-2}$	1.20	+ 10^{4}	3.27	$\times 10^{-1}$	
1.250×10^{4}	236.7	28.554	24.00	3066	2.222×10^{8}	5.68	$\times 10^{-7}$	2.69	$\times 10^{-20}$	8.95	$\times 10^{-14}$	3.92	$\times 10^{-11}$	3.30	$\times 10^{19}$	4.020×10^{3}	7.04	$\times 10^{7}$	5.71	$\times 10^{-1}$	1.58	8×10^{4}		$\times 10^{-1}$	
1.300×10^{8}	246.2	28.424	24.00	3206	2.334×10^{8}	4.56	$\times 10^{-7}$	2.16	$\times 10^{-10}$	6.87	$\times 10^{-14}$	3.01	$\times 10^{-11}$	2.53	$\times 10^{18}$	4.110×10^{3}	9.18	$\times 10^{3}$	4.48	$\times 10^{-1}$	2.06	6 $\times 10^{4}$	1.99	$\times 10^{-1}$	
1.312×10^{5}	,	28.3	24.	3240	2.362 $\times 10^{\circ}$	4.33	$\times 10^{-1}$	2.05	$\times 10^{-10}$	6.45	$\times 10^{-14}$	2,82	$\times 10^{-1}$	2.38	$\times 10^{18}$	4.132×10^{9}	9.77	$\times 10^{4}$	4.23	$\times 10^{-1}$	2.20	+ 10	1.88	$\times 10^{-1}$	

$1 \mathrm{lb} / \mathrm{ft}^{2}=0.3591 \mathrm{~mm}$ of Hg

Table 12
Values of temperature, pressure, and density up to the F_{2} layer
Latitude, 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height.		$\left\|\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ z^{\prime} \\ \mathrm{cm} / \mathrm{sec}^{\prime} \end{array}\right\|$	$\begin{gathered} \text { Hean } \\ \mathrm{Wel} \mathrm{Wt}^{2} \\ H \end{gathered}$	$\begin{gathered} \text { Temp } \\ \tau \\ \mathbf{K} \\ \hline \end{gathered}$	Scale Height H kna	Pressure millibars	Pressure Ratio p / p_{a}	Density$\stackrel{0}{\sigma^{2} \mathrm{~cm}^{0}}$	Density Fatio ρ / ρ_{α}		Mean Particle Speed crisec	d* $3 \times 10^{-4}{ }_{\text {cma }}$		- $2 \times 10^{-6} \mathrm{~cm}$		Speed of Sound on/sec
		Mean FreePathLan										$\begin{array}{\|c} \text { Mean Colli- } \\ \text { sion Freq } \\ 2 \\ 1 / \text { sec } \end{array}$	Mean Free Psth L cm	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \\ 1 / \mathrm{sec} \\ \hline \end{gathered}$		
km	mi															
0	0	978.03	28.90	299.0	8.787	1.013×10^{2}	1.0000	1.1	1.0000	0^{20}	$4,678 \times 10^{4}$	1.012×10^{-8}	$4.622 \times 10^{\text {a }}$	2.277×10^{-8}	2.054×10^{0}	3.477×10^{4}
1.524	. 94	977.56	28.90	290.5	8.540	8.496×10^{21}	. 8389	1.018×10^{-3}	. 8636	2.135×1016	4.611×104	1.172×10^{-8}	3.934×10^{8}	2.637×10^{-8}	1.748×10^{8}	3.425×104
3.048	894	977.09	28.90	281.9	8.294	7.092×10^{2}	. 2002	8.750×10^{-4}	7426	1.836×10^{18}	4.543×10^{4}	1.363×10^{-8}	3.333×10^{4}	3.067×10^{-8}	1.481×10^{8}	3.374×10^{4}
4.572	2.841	6.62	. 90	273.4	8.047	5.888×10^{9}	. 5813	7.491×10^{-4}	. 6357	1.572×10^{18}	4.474×104	1.592×10^{-5}	2.810×10^{9}	3.582×10^{-8}	$1,249 \times 10^{8}$	3.323×10^{4}
5.000	3.107		28.90	271.0	. 977	5.583×10^{9}	. 5511	7.166×10^{-4}	. 6081	1.503×10^{10}	4.454×10^{4}	1.665×10^{-6}	$2.676 \times 10^{\circ}$	3.745×10^{-8}	$1.189 \times 10^{\circ}$	3.308×10^{4}
6.096	3.7	976.16	28	263.2	7.751	4.856×10^{8}	. 4795	5.419×10^{-4}	. 5447	1.347×10^{18}	4.389×10^{4}	1.858×10^{-1}	$2.362 \times 10^{\circ}$	4.181×10^{-8}	. $050 \times 10^{*}$	3.260×10^{4}
7.620	4.735	975.69	28.90	252.4	7.437	3.975×10^{2}	. 3925	5.478×10^{-4}	4649	1.149×10^{10}	4.298×10^{4}	2.177×10^{-5}	$1.974 \times 10^{\prime \prime}$	4.898×10^{-8}	8.775×10^{8}	3.193×10^{4}
144	${ }_{8}^{5.682}$	5.22	90	1.6	7.120	$3.226 \times 10^{*}$. 3185	4.645×10^{-4}	. 3942	9.744×10^{18}	4.205×104	2.568×10^{-6}	1.638×10^{8}	5.778×10^{-8}	$7.278 \times 10^{\text {I }}$	10^{4}
10.000	6.214	974.96	28.90	235.5	6.943	2.857×10^{2}	. 2821	4.220×10^{-4}	3581	0.853×10^{18}	4.152×10^{4}	2.826×10^{-5}	$1.469 \times 10^{*}$	6.359×10^{-8}	6.529×10^{8}	3.084×10^{4}
10.668	6.629	974.75	28.90	.	6.797	2.593×10^{8}	. 2560	3.912×10^{-4}	. 3320	8.206×10^{18}	4.108×10^{4}	3.049×10^{-8}	1.347×10^{4}	6.861×10^{-8}	5.988×10^{6}	3.051×10^{4}
12.192	7.576	. 29	28.90	219.2	6.468	2.062×10^{2}	. 2336	3.272×10^{-4}	. 277	6.864×10^{14}	4.006×10^{4}	3.645×10^{-8}	1.099×10^{0}	8.202×10^{-5}	4.884×10^{6}	2.976×10^{4}
13.716	8.523	973.82	28.90	207.9	6.139	$\frac{1.619 \times 10^{2}}{1026}$. 1599	2.709×10^{-4}	2299	5.683×10^{18}	3.901×10^{4}	4. 403×10^{-5}	$8.861 \times 10^{*}$	9.906×10^{-8}	3.938×10^{-1}	2.898×10^{4}
15.240	9.470	973.35	28.90	196.6	5.803	1.256×10^{8}	. 1240	2.221×10^{-4}	1885	4.660×10^{14}	3.794×10^{4}	5.370×10^{-8}	$7.065 \times 10^{\circ}$	1.208×10^{-9}	3.140×10^{6}	2.818×10^{6}
16.000	9.942	973.12	28.90	191.0	5.642	1.100×10^{2}	. 1086	2.003×10^{-4}	. 1700	4.203×10^{18}	3.739×10^{4}	5.954×10^{-5}	$6.280 \times 10^{\text {m }}$	1.340×10^{-4}	$2.791 \times 10^{\text {t }}$	2.777×10^{4}
16.764	10.417	2.88	28.90	193.2	5.709	9.617×10	9.494×10^{-3}	1.732×10^{-4}	146	3.633×10^{10}	3.760×10^{4}	6.888×10^{-8}	5. 459×10^{8}	1.550×10^{-4}	2.428×10^{2}	$2.793 \times 10^{*}$
18.288	11.364	972.42	28.90	197.5	5.840	7.390×10	7.296×10^{-2}	1.301×10^{-4}	. 1104	2.730×10^{18}	3.803×10^{4}	9.166×10^{-8}	$4.149 \times 10^{*}$	2.062×10^{-6}	1.844×10^{8}	2.824×10^{4}
19.81	12.311	971.96	28.90	201.9	5,971	5.713×10	$5.640 \times 10^{-*}$	9.842×10^{-8}	B. 352×10^{-2}	2.065×10^{16}	3.844×10^{4}	1.212×10^{-1}	3.172×10^{4}	2.727×10^{-1}	1.410×10^{0}	2.855×10^{4}
21.336	13.258	971.49	23.90	206.2	6.102	4.441×10	4.385×10^{-5}	7.490×10^{-8}	6. $356 \times 10^{-\frac{1}{2}}$	1.571×10^{18}	3.886×10^{4}	1.592×10^{-4}	$2.440 \times 10^{\circ}$	$3.583 \times 10^{-}$	$1.084 \times 10^{\circ}$	2.885×10^{4}
22.860	14.205	971.02	28.90	210.6	6.233	3.472×10	3.428×10^{-2}	5.735×10^{-8}	4.867×10^{-8}	1.203×10^{18}	3.926×10^{4}	2.080×10^{-4}	1.888×10^{18}	4.680×10^{-4}	8.390×10^{7}	2.916×10^{4}
24.384	15.152	970.56	28.90	215.0	6.367	2.729×10	2.694×10^{-8}	4.416×10^{-8}	3.747×10^{-2}	9.263×10^{17}	3.967×10^{4}	2.701×10^{-4}	$1.468 \times 10^{\prime \prime}$	6.078×10^{-4}	6.527×10^{7}	2.946×10^{4}
25,908	16.098	970.10	28.90	2.3	6.501	2.156×10	2.129×10^{-2}	3.420×10^{-8}	2.203×10^{-1}	2.175×10^{17}	4.007×10^{4}	3.489×10^{-4}	1.149×10^{4}	$\underline{2} 846 \times 10^{-4}$	5.106×10^{4}	2.976×10^{4}
27.43	17.045	969.63	28.90	3.7	6.629	1.711×10	1.689×10^{-2}	2.660×10^{-8}	2.258×10^{-8}	5.591×10^{17}	4.046×10^{4}	4.483×10^{-4}	9.025×10^{7}	1.009×10^{-2}	4.011×10^{7}	3.005×10^{4}
28.9	17.992	9.1	28.90	88.0	6.764	1.364×10	1.347×10^{-8}	2.081×10^{-8}	1.766×10^{-8}	4.366×10^{17}	4.085×10^{4}	5.731×10^{-1}	7.128×10^{7}	1.290×10^{-2}	3.168×10^{7}	3.035×10^{4}
30.000	18.641	968.85	28.90	231.0	6.855	1.171×10	1.155×10^{-8}	1.764×10^{-5}	1.497×10^{-2}	$\frac{3.700 \times 10^{17}}{3}$	4.112×10^{4}	6.762×10^{-4}	6.081 $\times 10^{\text {\% }}$	$1.521 \times 10^{-}$	2.703×10^{7}	. 054×10^{4}
30.480	18.939	968.71	28.90	234.0	6.943	1.093×10	1.079×10^{-2}	1.624×10^{-6}	1.378×10^{-8}	3.408×10^{17}	4.138×10^{4}	7.342×10^{-4}	5.636×10^{7}	1.652×10^{-2}	2.505×10^{9}	3.074×10^{4}
32.004	19.888	96	28,90	243.4	7.227	8.815	8.703×10^{-2}	1.262×10^{-6}	1.071×10^{-8}	2.649×10^{17}	4.221×10^{4}	9.447×10^{-4}	4.468×10^{7}	2.126×10^{-5}	1.986×10^{7}	3.135×10^{4}
33.528	20.833	967.38	28.90	252.9	7.510	7.171	$7.080 \times 10^{\circ}$	9.864×10^{-6}	8.371×10^{-3}	2.069×10^{17}	4.302×10^{4}	1.209 $\times 10^{-5}$	3.558×10^{7}	$2.721 \times 10^{* *}$	1.581×10^{7}	3.196×10^{4}
35.052	21.780	967.32	28.90	262.3	7.794	5.879	5.804×10^{-1}	7.796×10^{-8}	6.616×10^{-3}	1.635×10^{17}	4.382×10^{4}	1.530×10^{-3}	2.864×10^{7}	3.442×10^{-8}	1.273×10^{7}	3.255×10^{4}
36.576	22.727	966.86	. 90	1.8	8.080	4.855	4.793×10^{-3}	6.214×10^{-3}	5.273×10^{-10}	1.304×10^{17}	4.460×10^{4}	1.919×10^{-3}	2.324×10^{7}	4.319×10^{-8}	1.033×10^{7}	3.313×10^{4}
38,100	23.674	966.40	28,90	281.2	8.364	4.037	3.985×10^{-3}	4.593×10^{-6}	$\frac{4.237 \times 10^{-8}}{3.29 \times 10^{-8}}$	1.047×10^{17}	4.537×10^{4}	2.389×10^{-3}	1.899×10^{7}	5.375×10^{-2}	$8.441 \times 10^{\circ}$	3.370×10^{4}
39.624	24.621	965.93	28.90	290.	8.650	3.377	3.334×10^{-9}	4.041×10^{-6}	3.429×10^{-1}	8.478×10^{16}	4.513×10^{4}	2.951×10^{-1}	1.563×10^{7}	6.641×10^{-8}	6.946×10^{6}	3.426×10^{4}
41.	25.5	96	28.90	300.1	8.93	2.842	2.806×10^{-8}	3.294×10^{-6}	2.795×10^{-8}	6.910×10^{16}	4.887×10^{4}	3.621×10^{-3}	1.294×10^{7}	8.148×10^{-8}	5.752×10^{8}	3.481×10^{4}
42.673	26.515	965.01	28.90	30.6	9.220	2,405	2.374×10^{-8}	2.702×10^{-6}	2.293×10^{-3}	5.569×10^{18}	4.760×10^{4}	4.414×10^{-8}	1.078×10^{7}	9.932×10^{-3}	4.793×10^{8}	3.536×10^{4}
44.197	27.462	964.55	28.90	319.0	9.504	2.046	2.020×10^{-3}	2.230×10^{-8}	1.893×10^{-3}	4.679×10^{18}	4.832×10^{4}	5.347×10^{-8}	9.037×10^{6}	1.203×10^{-1}	4.016×10^{6}	3.589×10^{4}
45.721	28.409	964.09	28.90	328.5	9.793	1.749	1.726×10^{-3}	1.852×10^{-5}	1.571×10^{-9}	3.884×10^{18}	4.903×10^{4}	6.442×10^{-1}	$7.612 \times 10^{*}$	1.449×10^{-8}	3.383×10^{5}	3.642×10^{4}
47.245	29.356	963.63	28.90	337.9	10.08	1.502	1.482×10^{-3}	1.546×10^{-8}	1.312×10^{-1}	3.243×10^{18}	4.973×10^{4}	7.717×10^{-9}	6.445×10^{8}	1.736×10^{-8}	$2.864 \times 10^{\circ}$	3.694×10^{4}
48.769	30.303	963.17	28.90	347.4	10.37	1.295	1.279×10^{-3}	1.297×10^{-6}	1.101×10^{-1}	2.721×10^{10}	5.043×10^{4}	9.196×10^{-3}	$5.484 \times 10^{\circ}$	2.069×10^{-2}	2.437×10^{8}	3.745×10^{4}
50.000	31.0	962	28	355.0	10.60	1.153	1.138×10^{-3}	1.129×10^{-8}	9.584×10^{-4}	2.369×10^{10}	5.097×10^{4}	1.056×10^{-2}	4.827×10^{8}	2.376×10^{-1}	2.145×10^{8}	3.787×10^{4}
50,293	31,250	962.71	28.90	355.0	10.60	1.121	1.107×10^{-2}	1.099×10^{-5}	9.324×10^{-4}	2.305×10^{16}	5.097×10^{4}	1.086×10^{-2}	4. $6 \% \times 10^{8}$	2.442×10^{-8}	2.087×10^{8}	3.787×10^{4}
51.817	32.197	962.25	28.90	355.0	10.60	9.714×10^{-1}	9.590×10^{-4}	9.517×10^{-7}	8.077×10^{-4}	1.997×10^{18}	5.097×10^{4}	1.253×10^{-8}	4.068×10^{6}	2.820×10^{-8}	1.808×10^{8}	3.787×10^{4}
53.341	33.144	961.79	28.90	355.0	10.61	8.416×10^{-1}	8.295×10^{-4}	8.246×10^{-7}	6.998×10^{-4}	1.730×10^{10}	5.097×10^{4}	1.446×10^{-8}	3.524×10^{6}	3.254×10^{-8}	1.566×10^{6}	3.787×10^{4}
54.865	34.091	961.34	28.90	355.0	10.62	7.293×10^{-1}	7.200×10^{-4}	7.145×10^{-7}	6.064×10^{-4}	1.499×10^{16}	$\frac{5.097 \times 10^{4}}{509}$	1.669×10^{-8}	3.054×10^{8}	3.756×10^{-2}	1.357×10^{6}	$\frac{3.787 \times 10^{4}}{3.787 \times 10^{4}}$
54309	35.038	950.88	28.90	355.0	10.62	6.320×10^{-1}	6.239×10^{-4}	6.192×10^{-7}	5.255×10^{-4}	1.299×10^{18}	5.097×10^{4}	1.926×10^{-9}	2.646×10^{8}	4.334×10^{-8}	1.176×10^{6}	3.787×10^{4}
5n.se3	35.985	960.	28,90	355.	10.63	5.477×10^{-1}	5.408×10^{-4}	5.367×10^{-7}	4.555×10^{-4}	1.126×10^{18}	5.097×10^{4}	2.222×10^{-8}	2.294×10^{6}	5.000×10^{-8}	1.020×10^{8}	3.787×10^{4}
		959.96	28.90	355.	63	4.748×10^{-1}	4.698×10^{-0}	4.653 $\times 10^{-7}$	3.948×10^{0}	9.760×10	5.097×10	2.564×10^{-2}	$1.988 \times 10^{\circ}$	$5.768 \times$	$8,837 \times 10^{6}$	3.787×10^{4}

Latitude, 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height			Mean Mol wh Δ	$\begin{gathered} \text { Temp } \\ T \\ \Upsilon \end{gathered}$	Scale Height ${ }_{H}$ k_{n}	Pressure millibars	Pressupe Batio p/pa	$\begin{gathered} \text { Density } \\ \rho \\ / \mathrm{cn}^{*} \end{gathered}$	Density Ratio σ p / ρ_{0}	NunberDensitynparticles/cm	Mean Particle Speed $\mathrm{cm} / \mathrm{sec}$	d. $3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-2} \mathrm{~cm}$		Speed of Scund $\mathrm{com} / \mathrm{sec}$
												$\begin{aligned} & \text { Mean Free } \\ & \text { Path } \\ & 2 \\ & \mathrm{~cm} \end{aligned}$	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ 2 \\ 1 / \mathrm{sec} \end{gathered}$	Mean Free Psth $\stackrel{L}{c m}$	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \text { rec } \\ 1 / \mathrm{sec} \end{gathered}$	
$\underline{\mathrm{km}}$	mi															
60.000	37.282	959.80	28.90	355.0		4.504×10^{-1}	4.447×10^{-4}	4.413×10^{-7}	3.745×10^{-4}	9.258×10^{16}	5.097×10^{4}	2.7				
60.961	37.8	59.51	28.90	348.9	. 45	4.112×10^{-1}	4.060×10^{-4}	4.100×70	3.480×10^{-4}	8.602×10^{16}	5.053×10^{4}	2.103×10^{-2} 2.909×10^{-2}	1.886×10^{6} 1.737×10^{6}	6.081×10^{-2} 6.545×10^{-2}	8.383×10^{80}	
62.485	38.826	959.05	28,90	339	0.17	3.548×10^{-1}	3.502×10^{-4}	3.639×10^{-7}	3.088×10^{-4}	7.634 $\times 10^{\text {18 }}$	5.053×10^{4} 4.982×10^{4}	2.909×10^{-2} 3.278×10^{-8}	1.737 1	6. 545×10	7.720×10^{8}	3.754×10^{4}
64.009	39.773	958.60	28.90	329.4	9.879	3.048×10^{-1}	3.009×10^{-4}	3.219×10^{77}	2.732×10^{-4}	6.753×10^{18}	4.910×1	$\frac{3.278 \times 10^{-2}}{3.705 \times 10^{-8}}$	$\frac{1.520 \times 10^{6}}{1.325 \times 10^{6}}$	$\frac{1.374 \times 10^{-}}{837 \times 10^{-}}$	6,756 $\times 10^{8}$	3,701 $\times 10^{*}$
65.533	40.720	958.14	. 90	319.7	9. 589	2.607×10^{-1}	2.574×10^{-8}	2.837×10^{-7}	2.408×10^{-4}	5.952×10^{16}	4.837×10^{4}	4	${ }^{1.325 \times 10^{6}}$	8.337×10^{-8}	5.890×10^{6}	3.647×10^{4}
67.057	41.667	957.68	28.90	309.9	9.302	2.220×10^{-1}	2.192×10^{-4}	2.491×10^{-7}	2.114×10^{-4}	5.227×10^{18}		4	1.151×10^{8}	$9.459 \times 10^{-}$	5.114×10^{6}	3.593×10^{4}
68.581	42.614	957.23	28.90	300.2	9.013	1.881×10^{-1}	1.857×10^{-4}	2.179×10^{-9}	1.849×10^{-4}	$\frac{4.571 \times 10^{28}}{}$	$\frac{4.763 \times 10^{4}}{4.688 \times 10^{4}}$	$5.473 \times$		$\frac{1.077 \times 10^{-1}}{1.232 \times 10^{-1}}$	4.422 $410^{\text {s }}$	3.538×10^{4}
70.105	43,56	56.77	28.90	290.4	8.726	1.585×10^{-1}	1.564×10^{-4}	1.898×10^{-7}	1.611×10^{-4}	3.981×10^{14}	4.611×10^{4}	6.285 $\times 10^{-8}$	8, 8.564 $\times 10^{6}$		3.806×10^{8}	3.482×10^{4}
71.629	44.508	956.32	28.90	280.7	437	1.328×10^{-1}	1.311×10^{-4}	1.645×10^{-7}	1.396×10^{-4}	3.452×10^{15}	4.611×10^{4} 4.533×10^{4}	7.249 $\times 10^{-2}$	7.336 $\times 10^{8}$	1.414×10^{-1}	3.261×10^{6}	3.425×10^{4}
73.153	45.455	955.86	28.90	271.0	147	1.106×10^{-7}	1.092×10^{-4}	1.420×10^{-7}	1.205×10^{-4}	2.978×10^{18}	$\frac{4.454 \times 10^{4}}{}$	$\frac{7.249 \times 10^{-2}}{8.402 \times 10^{-2}}$	6.253 5.301×10^{8}	$\frac{1.631 \times 10^{-1}}{1890 \times 10^{-1}}$	2.779×10^{8}	3.367×10^{4}
74	46.402	955.41	28.90	261.2	7.861	9.149×10^{-4}	9.033×10^{-8}	1.218×10^{-7}	1.034×10^{-4}	$2.556 \times 10^{\text {5 }}$	$4.373 \times 10^{*}$	8.402×10^{-3} 9.790×1	$5.301 \times$	1.890×10^{-1}	2.356×10^{8}	3.308×10^{4}
76.201	47.349	954.96	28.90	251.5	7.51	7.517×10^{-2}	7.421×10^{-8}	1.040×10^{-7}	8.823×10^{-8}	2.181×10^{15}	4.32×10^{4}	9.790×10 1.147×10		2.203×10	1.985×10^{5}	3.248×10^{4}
77.725	48.295	954.51	28.90	241.8	7.282	6.129×10^{-3}	6.051×10^{-8}	8.818×10^{-8}	7.484×10^{-8}	$\frac{1.850 \times 10^{13}}{1.85}$	$\frac{4.291 \times 10^{4}}{4.207 \times 10^{4}}$	$1.145 \times 10^{10-1}$	+ ${ }^{10^{8}}$	$2.581 \times 10^{-}$	1.662×10^{8}	3.187×10^{4}
78.000	48.466	954.42	28.90	240.0	27	5.903×10^{-4}	5.828×10^{-8}	8.555×10^{-8}	7.260×10^{-8}	1.795×10^{40}	4.291×10^{4}	1.394×10^{-1}	+3.110 3 +100	3.043×10^{-1}	1.382×10^{8}	3.125×10^{4}
79.249	49.242	954.06	28.90	240.0	230	4.967×10^{-1}	4.902×10^{-8}	7.200×10^{-8}	6.110×10^{-5}	1.510×10^{88}	$4.191 \times 10^{*}$	$1.394 \times 10^{1} \times 10^{-1}$	3.006×10^{8} 2530×10^{8}	3.137×10^{-1}	1.336×10^{5}	$3.113 \times 10^{*}$
80.7	50.189	953.61	28.90	240.0	7.233	4.026×10^{-2}	3.972×10^{-1}	5.834×10^{-8}	4.951×10^{-8}	1.224×10^{16}	4.191×10^{4}	$\frac{1.054 \times 10^{2}}{2.044 \times 10^{2}}$		$\frac{3.128 \times 10^{-1}}{}$	1.124×10^{8}	3.113×10^{4}
B2	51.136	953.16	28.90	240.0	7.239	3.263×10^{-8}	3.220×10^{-8}	4.729×10^{-6}	4.013×10^{-8}	9.920×10^{14}	4.191×10^{4}	2.522×10^{-1}	1.662×10^{8}	5.675×10^{-1}	9.112×10^{4}	3.113×10^{4}
83.000	51.573	952.95	28.90	240,0	239	2.962×10^{-8}	2.222×10^{-8}	4.292×10^{-4}	3.642×10^{-0}	9.005×10^{14}	4.191×10^{4}	2.779×10^{-1}	1.662 $\times 1.10^{6}$	5.675×10^{-1}	7.385×10^{6}	$3.113 \times 10^{*}$
83.821	52.083	952.70	28.79	243.0	7.358	2.648×10^{-2}	2.612×10^{-6}	3.776×10^{-4}	3.205×10^{-8}	7.952×10^{14}	4.225×10^{4}	3.146×10^{-7}	1.508×10^{8}	252		3×10^{4}
85. 343	53	952.25	59	248.4	580	2.160×10^{-9}	2.132×10^{-9}	2.993×10^{-8}	2.540×10^{-8}	6.348×10^{14}	4.287×10^{4}	3.942×10^{-1}	1.088 $\times 10^{8}$	8. $8.80 \times 10^{10-1}$	5.958×10^{4}	3.140×10^{4}
86.869	53,977	951.80	28.39	253.9	7.806	1.774×10^{-2}	1.750×10^{-8}	2.387×10^{-4}	2.025×10^{-8}	5.097×10^{24}	4.350×10^{4}	4.909×10^{-1}	8,861 $\times 10^{4}$	8.869×10^{-1} 1.105	4.834×10^{4}	3.189×10^{4}
88.393	54.924	951.35	28.19	259.4	. 035	1.454×10^{-2}	1.445×10^{-8}	1.915×10^{-8}	1.625×10^{-8}	4.119×10^{44}	4.412×10^{4}	6.075×10^{-1}	$7.263 \times 10^{+}$	1,10	38* $\times 10^{*}$	$\frac{3.238 \times 10^{4}}{}$
89.917	55.871	5.90	27.98	264.9	269	1.215×10^{-3}	1.199×10^{-6}	1.546×10^{-3}	1.312×10^{-0}	3.346×10^{14}	4.475×10^{4}	$7.473 \times 10^{-}$	5.988×10^{4}			3.287×10^{4}
90,441	56.818	950.45	27.78	270.3	504	1.014×10^{-2}	1.001×10^{-2}	1.254×10^{-8}	1.064×10^{-8}	2.737×10^{14}	4.537×10^{4}	$9.141 \times$	4.963×10^{4}	$\begin{aligned} & 1.681 \\ & 2.057 \end{aligned}$	2.661×10^{4} 2.206×10^{4}	3.336×10^{4}
92.965	57.765	950.00	27.58	275.8	8.745	8.504×10^{-8}	8.391×10^{-8}	1.023×10^{-6}	8.685×10^{-9}	2.250×10^{14}	4.599×10^{4}	1.112	4.136×10^{4}	$\frac{2.057}{2.502}$	$\frac{2.206 \times 10^{4}}{1.838 \times 10}$	$\frac{3.385 \times 10^{4}}{3.435 \times 10^{4}}$
94.	58	55	27.38	. 3	8.989	7.166×10^{-3}	7.071×10^{-6}	8.395×10^{-9}	7.124×10^{-6}	1.860×10^{14}	4.662×10^{4}	1.346	3.464×10^{4}	3.02	$\begin{aligned} & 2.539 \times 10^{4} \\ & 1.539 \times 10^{4} \end{aligned}$	$\begin{aligned} & 3.435 \times 10^{4} \\ & 3.484 \times 10^{4} \end{aligned}$
96.013		9, 10	18	286.8	2.235	6.067×10^{-3}	5,988 $\times 10^{-6}$	$6.920 \times 10^{-*}$	5.872×10^{-8}	1.544×10^{14}	4.725×10^{4}	1.621	2.915×10^{4}	3.642	$\left[\begin{array}{l} 1.539 \times 10^{4} \\ 1.296 \times 10^{4} \end{array}\right.$	$\begin{aligned} & 3.484 \times 10^{4} \\ & 3.534 \times 10^{4} \\ & \hline \end{aligned}$
97.537 99.061	60.606	948.65	26.97	292.3	488	5.158×10^{-3}	5.089×10^{-8}	5.730×10^{-8}	4.862×10^{-6}	1.288×10^{14}	4.788×10^{4}	1.943	2.464×10^{4}	4.372	1.295×10^{4}	$\frac{3.534 \times 1.104}{3.583 \times 10^{4}}$
$\begin{gathered} 99.061 \\ 100.58 \end{gathered}$	61.553 62.500	${ }_{948}^{94.20}$	26.77 26.57	297.7 303.2	9.744 1.000	4.404×10^{-1} 3.777×10^{-1}	4.346×10^{-6} 3.727×10^{-0}	4.767×10^{-8} 3.983×10^{-8}	4.045×10^{-6} 3.350×10^{-6}	1.079×10^{14}	4.850×10^{4}	2.318	2.092×10^{4}	5.215	$9.300 \times 10^{\text {a }}$	3.833×10^{4}
102.11	63.447	947.30	37	8.7	1.027×10	$\frac{3.251 \times 10^{-1}}{3}$	3.208×10^{-6}	$\frac{3.983 \times 10^{-8}}{3.343 \times 10^{-9}}$	$\frac{3.360 \times 10^{-6}}{2.837 \times 10^{-8}}$	$\frac{9.089 \times 10^{15}}{7.686 \times 10^{18}}$	$\frac{4.913 \times 10^{4}}{4.977 \times 10^{4}}$	2.753	1.785×104	6.134	$7.932 \times 10^{*}$	3.683×10^{4}
103.63	64.394	946.86	26.17	314.2	1.053×10	2.810×10^{-2}	2.773×10^{-9}	2.817 $\times 10^{-6}$	2.390×10^{-6}	6.526 $\times 10^{10}$	4.977×10^{4} 5.040×10^{4}	3.256 3.834	1.528×10^{4}	7.325	6.794×10^{2}	3.734×10^{4}
105.16	65.341	946.41	25.97	319.6	1.081×10	2.437×10^{-1}	2. 405×10^{-6}	2.383×10^{-8}	2.022×10^{-8}	5.563 $\times 10^{13}$	$5.040 \times 10^{\circ}$ 5.103×10^{4}	3.834	1.314 $\times 10^{4}$	${ }^{8.626}$	5.842×10^{2}	3.784×10^{4}
106.68	66.288	945.97	25.76	325.1	1.108×10	2.122×10^{-7}	2.093×10^{-6}	2.023×10^{-9}	1.717×10^{-8}	$\frac{4.761 \times 10^{18}}{}$	$\frac{5.167 \times 10^{4}}{5.15}$		$135 \times$	$\frac{1.012 \times 10}{1.85}$	$\frac{5.043 \times 10^{1}}{4.300 \times 1}$	3.835×10^{4}
108. 20	67.235	945.51	25.56	330.6	1.136×10	1.853×10^{-8}	1.829×10^{-8}	1.725×10^{-0}	1.464×10^{-8}	4.090×10^{13}	$5.231 \times 10^{*}$	6.118	$8.550 \times 10^{\circ}$		4.370 ${ }^{4.800} \times 10^{7}$	3.886×10^{4}
109.73	68.182	945.07	25.36	336.1	1.165×10	1.624×10^{-8}	1.603×10^{-8}	1.475×10^{-9}	1.252×10^{-8}	3.526×10^{13}	5.294×104	7.096	7.450 $\times 10^{\circ}$	1.356×10 1.596×10	$3,800 \times 10^{3}$ 3.316×10^{4} 2	3.937×10^{4} 3.988×10^{4}
111.25	69.12	944.62	25.16	341.6	1.194×10	1.428×10^{-2}	1.409×10^{-6}	1.266×10^{-8}	1.074×10^{-8}	3.051×10^{19}	5.359×10^{4}	8.201	$\frac{6.535 \times 10^{8}}{}$		$\frac{3.316 \times}{2.904 \times}$	
112.78	70.076	944.18	24.96	347.0	1.223×10	1.260×10^{-3}	1.243×10^{-8}	1.090×10^{-4}	9.252×10^{-7}	2.649×10^{18}	5.424×10^{4}	9.447	5.741×10^{3}	2.126×1	$\begin{aligned} & 2.904 \times 10^{8} \\ & 2.552 \times 10^{8} \end{aligned}$	4.040×10^{4}
114.30	71.023	943.73	24.75	352.5	1.254×10	1.114×10^{-2}	1.100×10^{-5}	9.419×10^{-10}	7.994×10^{-7}	2.307×10^{12}	5.489×10^{4}	1.085×10	5.060×10^{8}	2.126×10 2.440×10	$\begin{aligned} & 2.552 \times 10^{2} \\ & 2.249 \times 10^{3} \end{aligned}$	$\begin{aligned} & 4.092 \times 10^{4} \\ & 4.144 \times 10^{4} \\ & \hline \end{aligned}$
115.82	71.970	943.29	24.55	358.0	1.284×10	9.889×10^{-4}	9.758×10^{-7}	8.163×10^{-10}	6.927×10^{-7}	2.015×10^{18}	5.554×10^{4}	1.241×10	4.474×10^{5}	$\frac{2.793 \times 10}{}$	$\frac{2.249 \times 10^{8}}{1.988 \times 10^{2}}$. 144×10^{4}
117	72.917	942.84	24.35	363.5	1.315×10	8.799×10^{-4}	8.687×10^{-7}	7.095×10^{-10}	6.021×10^{-7}	1.767×10^{18}	5.619×10^{4}	1.416×10	$3.967 \times 10^{\text {a }}$	3.187×10	1.763×10^{8}	$\begin{aligned} & 4.196 \times 104 \\ & 4.249 \times 10^{4} \end{aligned}$
120.00	73.864	942,07	24.15	369.0	$\frac{1.347 \times 10}{1.370 \times 10}$	7.851×10^{-4}	7.751×10^{-7}	6. 185×10^{-10}	$\frac{5.249 \times 10^{-7}}{469 \times 10^{-7}}$	1.553×10^{14}	5.685×104	1.611×10	3.528×10^{2}	3.626×10	1.568×10^{8}	
120.40	74.811	941.95	24.00	375.0	1.378×10	\| 7.034×10^{-6}	6.944×10^{-7} 6.746×10^{-7}	$\left\|\begin{array}{l} 5.447 \times 10^{-50} \\ 5.263 \times 10^{-10} \end{array}\right\|$	4.622×10^{-7} 4.466×10^{-7} 	1,376 ${ }^{1.10^{12}}$, 818	${ }^{8}$	4.092×10	1.401×10^{8}	4.342×10^{4}
121.92	75.758	941.50	24.00	382.8	1.407×10	6.125×10^{-4}	6.047×10^{-7}	4.622×10^{-10}	3.923×10^{-7}	+1.168 $\times 10^{19}$	5. 5.809×10^{4}	1.882×10 2.143×10	055	4.235×10	1.358×10^{2}	4.354×10^{4}

Table 12 (Cont'd)
Latitude, 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height h			Mean $\mathrm{Mol} \mathrm{w}_{\mathrm{t}}$ $\stackrel{H}{4}$	$\begin{array}{c\|} \text { Tenp } \\ T \\ { }_{\mathrm{K}} \end{array}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \text { km } \\ \hline \hline \end{gathered}$	Pressure millibars	Pressure Hatio p / P_{a}	Density $\stackrel{\rho}{\mathrm{gm} / \mathrm{an}^{\prime}}$	Density Ratio $\sigma$$\rho / \rho_{a}$	Number Density particles/cn*	Mean Particle Speed v on/ sec	${ }^{\text {cm }}$		0^{-8}		Speed of Sound $\mathrm{cm} / \mathrm{sec}$
		Mean FreePathLcm										$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \\ 1 / \mathrm{sec} \\ \hline \end{gathered}$	$\begin{gathered} \text { Mean Free } \\ \text { Pach } \\ L \\ \text { cal } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ v \\ 1 / \mathrm{sec} \\ \hline \end{array}$		
km	${ }^{\text {mi }}$															
137.2	85.23	937.08	24.00	460.5	1.701×10	2.30×10^{-4}	2.27×10^{-7}	$1.44 \times 10^{-}$	1.22×10^{-7}	3.64×10^{10}	6.37×10^{4}	6.86×10	9.28×10^{2}	1.54×10^{8}	4.13×10^{2}	4.82×10^{4}
154.2	94.70	932.69	24.00	538.1	1.997×10	1.02×10^{-4}	1.00×10^{-7}	5.46×10^{-11}	4.64×10^{-3}	1.38×10^{12}	6.89×10^{4}	1.81×10^{8}	3.80×10^{2}	4.08×10^{2}	1.69×10^{8}	5.21×10^{4}
160.9	00.0	930.25	24.00	581.6	2.164×10	6.71×10^{-5}	6.62×10^{-4}	3.32×10^{-11}	2.82×10^{-8}	8.40×10^{11}	7.16×10^{4}	2.98×10^{2}	2.40×10^{2}	6.70×10^{8}	1.07×10^{2}	5.42×10^{4}
167.6	104.2	928.33	24.00	615.8	2.296×10	4.98×10^{-5}	4.92×10^{-8}	2.33×10^{-13}	1.98×10^{-6}	5.90×10^{11}	7.37×10^{4}	4.24×10^{2}	1.74×10^{2}	9.55×10^{8}	7.72×10	
182.9	113.6	924.00	24.00	693.5	2.598×10	2.67×10^{-8}	2.63×10^{-6}	1.11×10^{-12}	9.41×10^{-6}	2.80×10^{11}	7.82×10^{4}	8.94×10^{2}	8.75×10	2.01×10^{3}	3.89×10	
198.1	123.1	919.67	24.00	771.1	2.902×10	1.53×10^{-8}	1.51×10^{-8}	5.72×10^{-12}	4.86×10^{-8}	1.44×10^{11}	8.24×10^{4}	1.73×10^{8}	4.76×10	3.90×10^{8}	2.12×10	
213.4	132.6	915.41	24.00	848.8	3.210×10	9.29×10^{-6}	9.17×10^{-8}	3.16×10^{-18}	2.68×10^{-9}	7.98×10^{10}	8.65×10^{4}	3.13×10^{8}	2.76×10	7.05×10^{3}	1.23×10	
228.6	142.0	911.17	24.00	926.5	3.520×10	5.94×10^{-8}	5.86×10^{-9}	1.85×10^{-10}	1.57×10^{-6}	4.66×10^{10}	9.04×10^{4}	5.35×10^{8}	1.69×10	1.20×10^{4}	7.50	
243.8	151.5	906,93	24.00	1004	3.832×10	3.91×10^{-8}	3.86×10^{-0}	1.12×10^{-12}	9.54×10^{-10}	2.84×10^{10}	9.41×10^{4}	8.82×10^{8}	1.07×10	$1,98 \times 10^{4}$	4.74	
259.1	161.0	902.76	24.00	1082	4.148×10	2.67×10^{-8}	2.63×10^{-9}	7.11×10^{-1}	6.04×10^{-20}	1.80×10^{10}	9.76×10^{4}	1.39×10^{4}	7.01	3.13×10^{4}	3.12	
274.3	170.4	898.61	24.00	1160	4.466×10	1.87×10^{-8}	1.85×10^{-4}	4.65×10^{-10}	3.9×10^{-10}	1.18×10^{10}	1.01×10^{8}	2.12×10^{4}	4.76	4.78×10^{4}	2.12	
289.6	179.9	894.50	24.00	1237	4.787×10	1.35×10^{-8}	1.33×10^{-8}	3.14×10^{-13}	2.66×10^{-10}	7.95×10^{9}	1.04×10^{8}	3.16×10^{4}	3.31	7.10×10^{4}	1.47	
304.8	189.4	890.38	24.00	1315	5.111×10	9.91×10^{-7}	9.79×10^{-16}	2.18×10^{-12}	1.85×10^{-19}	$5.51 \times 10^{\circ}$	1.08×10^{8}	$4.54 \times 10^{+}$	2.37	1.02×10^{8}	1.05	
320.0	198.9	886.33	24.00	1393	5.438×10	7.42×10^{-7}	7.33×10^{-10}	1.54×10^{-19}	1.31×10^{-10}	$3.88 \times 10^{\circ}$	$1.11 \times 10^{\circ}$	6.43×10^{4}	1.72	$1.45 \times 10^{\circ}$	7.66×10^{-1}	
321.9	200.0	885.84	24.00	1402	5.478×10	$7.18 \times 10^{\prime \prime}$	7.09×10^{-10}	1.48×10^{-12}	1.26×10^{-10}	3.74×10^{9}	1.11×10^{8}	6.70×10^{4}	1.56	1.51×10^{8}	7.38×10^{-1}	
335.3	208.3	882.27	24.00	1470	5.768×10	5.65×10^{-2}	5.58×10^{-10}	1.11×10^{-13}	9.41×10^{-11}	2.80×10^{8}	1.14×10^{8}	8.94×10^{4}	1.27	2.01×10^{8}	5.66×10^{-1}	
350.5	217.8	878.28	24.00	1548	6.100×10	4.37×10^{-3}	4.31×10^{-10}	8.14×10^{-14}	6.91×10^{-11}	$2.06 \times 10^{\circ}$	1.17×10^{8}	1.22×10^{8}	9.50×10^{-1}	2.74×10^{8}	4.27×10^{-1}	
365.8	227.3	874.26	24.00	1626	6.436×10	3.42×10^{-7}	3.38×10^{-10}	$6.08 \times 10^{-1 / 4}$	5. 16×10^{-12}	$1.54 \times 10^{\circ}$	1.20×10^{8}	$1.63 \times 10^{\circ}$	$\frac{7.35 \times 10^{-1}}{7,71 \times 10^{-1}}$	3.66×10^{8}	3.27 $\times 10^{-1}$	
381.0	236.7	870.30	24.00	${ }^{1703}$	6.774×10	2.72×10^{-7}	2.69×10^{-10}	${ }^{4.61} \times 1{ }^{10-14}$	3.92×10^{-18}	1.17×10^{6} 8	1.23×10^{5}	2.15×10^{8} 2	5.71 $\times 10^{-1}$	4.83×10^{8}	2,54 $\times 10^{-1}$	
396.2	246.2	866.39	24.00	1781	7.115×10	2.18×10^{-7}	2.16×10^{-10}	3.54×10^{-14}	3.01×10^{-14}	8.93×10^{6}	1.25×10^{5}	2.80×10^{5}	4.48×10^{-3}	6.29×10^{8}	1.99×10^{-1}	
400.0	248.6	865.42	24.00	1800	7.199×10	2.07×10^{-7}	2.05×10^{-10}	3.32×10^{-14}	2.82×10^{-11}	8.40×10^{8}	1.26×10^{8}	2.98×10^{8}	4.23×10^{-1}	6.70×10^{0}	1.88 $\times 10^{-1}$	

1 millibar $(\mathrm{mb})=10^{4}$ dynes $/ \mathrm{cm}^{2}=0.750 \mathrm{~mm}$ of Hg

Latitude, 45°. Engineering Inits. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.375 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$.

Height		$\left\|\begin{array}{c} \text { Apparent } \\ G_{\text {ravity }} \\ \mathrm{ft}^{\prime} \mathrm{sec}^{2} \end{array}\right\|$	Mean Mol wt "	$\begin{array}{\|c} \hline \text { Tent } \\ T \\ O_{\mathrm{R}} \\ \hline \end{array}$	Scale Height Hft	$\underset{\mathrm{lb} / \mathrm{ft}^{\mathrm{g}}}{P}$	Pressure Ratio p / p_{a}	Density slug/ft ${ }^{6}$	Density Ratio o ρ / ρ_{a}	NumberDensitynparticles $/ f t^{3}$	Mean Parti. cle Speed $\mathrm{ft} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{~cm}$		$d * 2 \times 10^{-6} \mathrm{~cm}$		Speed of Sound $\mathrm{ft} / \mathrm{sec}$	
		Mean Free Path										$\begin{aligned} & \text { Mean Colli- } \\ & \text { sion Freq } \end{aligned}$	Mean Free Path.	$\begin{aligned} & \text { Mean Colli- } \\ & \text { sion Freq } \end{aligned}$			
ft	mi														$1 / \mathrm{sec}$		
	0					2.7			2.375×10^{-3}			1.506×10^{3}	3.197×10^{-7}	$4.712 \times 10^{\circ}$	$7.193 \times$	2.094×10^{4}	
5,000		32.159	26.90	500.6	2.676×10^{4}	1761	. 8322	047	8819	6.268×10^{29}	1.400×10^{3}	3.709×10^{-7}	$3.991 \times 10^{\circ}$	8.345×10^{-7}	1.774×10^{2}	1.100×10^{4}	
10,000	1,894	32	28.90	482.7	2.582×10^{4}	1456	. 6882	1.755×10^{-2}	73	5.374×10^{33}	1.454×10^{8}	4.325×10^{-7}	$3.362 \times 10^{*}$	9.732×10^{-7}	1.494×10^{9}	1.060 $\times 10^{8}$	
15,000	2.841	32.128	28.90	464.9	2.487×10^{4}	1196	. 5650	1.496×10^{-3}	1	4.582×10^{23}	$1.427 \times 10^{3} 5$	5.074×10^{-7}	2.813×10^{6}	$1.142 \times 10^{-}$	1.250×10^{4}	1.060×10^{3}	
20,000	3.788	32.113	8.90	447	2.393×10^{4}	4.6	. 460	1.268×10^{-8}	40	3.883×10^{20}	$1.399 \times 10^{2} 5$	5.986	$2.337 \times 10^{\circ}$	1.347×10^{-8}	1.039×10^{4}	1.039×10^{8}	
25,000	4.735	32.097	28.90	429.2	2.299×10^{4}	787. B	3723	1.068×10^{-3}	4496	$3.269 \times 10^{\text {a }}$	$1,371 \times 1$.111 $\times 10$	1.928×10	1.600×10	8.569×10^{8}	1.018×10^{4}	
30,000	5.682	32.082	28.90	411.4	2.204×10^{4}	631.2	. 2983	8.926×10^{-4}	. 3758	2.733×10^{28}	1.342×10^{3}	8.505×10^{-7}	$1.578 \times 10^{\circ}$	1.914×10^{-2}	7.013×10^{8}	9.988 $\times 10^{8}$	
35,000	6,629	32.066	28.90	393,6	$2.110 \times 10^{+}$	500. 9	. 2367	7.404×10^{-4}	. 3118	$2.267 \times 10^{9} 2$	$1.313 \times 10^{3} 1$	1.025×10^{-6}	$1,280 \times 10^{\text {b }}$	2.307×10^{-6}	$5.689 \times 10^{*}$	9.750×10^{2}	
35,332	6,692	32.065	28.90	392.4	2.104×10^{4}	493.1	2330	7.311×10^{-4}	3078	2.239×10^{23}	$1.311 \times 10^{3} 1$	1.038×10^{-8}	$1.262 \times 10^{\circ}$	2.337×10^{-6}	$5.609 \times 10^{*}$	9.735×10^{8}	
40,000	7.576	32.051	28.90	392.4	2.104×10^{4}	395.0	. 1867	5.856×10^{-4}	. 2466	1.793×10^{63}	1.311×10^{9}	2.298×10^{-6}	1.011×10^{8}	2.917×10^{-6}	4.493×10^{8}	9.735×10^{2}	
45,000	823	32.036	28.90	39	2.105×10^{4}	311.6	472	4.519×10^{-4}	1945	1.414×10^{23}	1.311×10^{3}	1.644×10^{-8}	7.976×10^{4}	$3.69 \times 10^{-}$	$3.545 \times 10^{*}$	9.735×10^{2}	
50,000	470	32,020	28,90	392.4	2.105×10^{4}	245.8	1161	3.644×10^{-4}	1534	1.116×10^{23}	1.311×10^{3}	2.084×10	6.292×10^{8}	4.688×10^{-0}	2.796×10^{8}	9.735×10^{2}	
55,000	. 417	32.005	8.90	392.4	2.107×10^{4}	193.9	.164 $\times 10^{-2}$	2.875×10^{-7}	1211	8.804×10^{19}	1.311×10^{8}	2.640×10^{-1}	4.965×1	$5.941 \times 10^{-}$	2.207×10^{6}	9.735×10^{2}	
60,000	11.364	31.990	28.90	392.4	2.108×10^{4}	153.1	7.232×10^{-2}	2.269×10^{-4}	9.354×10^{-8}	$6.948 \times 10^{\text {a }}$	$1.311 \times 10^{3} 3$	3.34	3.918×10	7.528	1.741×10^{6}	$9.735 \times 10^{\mathrm{z}}$	
65,000	12.311	31.974	28.90	392.4	2.110×10^{4}	120.8	5.709×10^{-2}	1.791×10^{-4}	7.542×10^{-2}	5.484×10^{102}	1.311×10^{3}	$4.238 \times 10^{-}$	$3.093 \times 10^{\circ}$	9.536×10^{-1}	1.375×10^{4}	9.735×10^{2}	
70,000	13.258	31.959	28.89	392.4	2.111×10^{4}	95.46	4.511×10^{-2}	1.415×10^{-8}	5.957×10^{-3}	4.333×10^{22}	1.311×10^{3}	5.364×10^{-8}	2.444×10^{6}	$1.207 \times 10^{-}$	1.086×10^{8}	9.737×10^{2}	
75,000	14.205	31.944	28.88	392.4	2.113×10^{4}	75.46	3.566×10^{-2}	1.118×10^{-4}	$4,706 \times 10^{-12}$	$3.425 \times 10^{* *}$	1.311×10^{3}	6.787×10^{-2}	1.931×10^{6}	1.527	8.582×10^{7}	$9.739 \times 10^{*}$	
80,000	15	31.929	28,86	39	$\left\lvert\, \frac{2.115 \times 10^{4}}{2110^{4} \times 10^{4}}\right.$	59.67	2.820×10^{-2}	8.836×10^{-8}	$\frac{1,720 \times 10^{-2}}{2,92 \times 10^{-2}}$	$\frac{2.709 \times 10^{22}}{}$	$1.311 \times 10^{3} 8$	8.582×10^{-8}	$1.528 \times 10^{\text {8 }}$	1.931×10^{-8}	$6,791 \times 10^{7}$	9.741 $\times 10^{2}$	
85,000	16	31.913	28.85	39	$2.11{ }^{2} \times 10^{4}$	47.21	2.231×10^{-2}	6.988×10^{-3}	2.942×10^{-3}	2.143×10^{22}	$1.312 \times 10^{3} 1$	1.085×10^{-8}	1.210×10^{2}	2.441×10^{-7}	5,378 $\times 10^{7}$	9.743×10^{2}	
90,000	17,045	31.898	28.84	39	2.119×10^{4}	37.36	1.765×10^{-2}	5.528×10^{-8}	2.327×10^{-9}	1.696×10^{22}	1.312×10^{3}	1.371×10^{-8}	9.572×10^{7}	3.084×10^{-8}	4.254×10^{7}	9.745×10^{8}	
95,000	17.992	31.883	. 63	392.4	$2.121 \times 10^{+}$	29.59	1.398×10^{-2}	4.376×10^{-8}	1.842×10^{-2}	1.348×10^{12}	$1.312 \times 10^{3} 1$	$\underline{1.731 \times 10^{-5}}$	7.580×10^{7}	3.894×10^{-5}	3.369×10^{7}	9,747 $\times 10^{2}$	
100,000	18,939	31,868	28.82	392.4	2.123×10^{2}	23, 44	1.107×10^{-2}	3.462×10^{-8}	1.459×10^{-2}	1.063×10^{22}	1.312×10^{3}	2.187×10^{-8}	6.002×10^{7}	4.920×10^{-8}	2.668×10^{7}	9.749×10^{2}	
104,986	19.88	31.852	8.80	392.4	2.125×10^{4}	18.58	8.781×10^{-3}	2.746×10^{-5}	1.156×10^{-2}	8.437×10^{31}	$1.313 \times 10^{3}{ }^{2}$	2.755×10^{-8}	4.765×10^{7}	6.200×10^{-8}	2.118×10^{2}	$9.751 \times 10^{*}$	
105,000	19,886	31,852	28.80	392,5	2.125×10^{6}	18.57	8.775×10^{-3}	2.744×10^{-8}	1.155×10^{-2}	8.429×10^{101}	$1.313 \times 10^{3} 2$	2.758×10^{-5}	4.761×10^{7}	6.205×10^{-8}	2.116×10^{7}	$9.752 \times 10^{\circ}$	
110,000	20,833	31.83?	. 7	413.3	2.240×10^{4}	14.77	6.979×10^{-3}	2.071×10^{8}	8.720 $\times 10^{-3}$	6.365×10^{21}	$1.348 \times 10^{3} 3$	3.652×10^{-8}	3.691×10^{7}	8.218×10^{-8}	1.640×10^{7}	1.001×10^{5}	
115,000	21.780	31.222	8.78	434.2	2.355×10^{4}	11.88	5.615×10^{-3}	1.586×10^{-8}	6.676×10^{-3}	4.875×10^{21}	1.381×10^{4}	4.768×10^{-4}	2.896×10^{7}	1.073×10^{-4}	1.288×10^{2}	1.026×10^{2}	
120,000	22.727	31.807	28.77	455.1	2.471×10^{4}	9.665	4.567×10^{-3}	1.230×10^{-8}	5.178×10^{-8}	3,783 $\times 10^{21}$	$1.415 \times 10^{3} 6$	6.145×10^{-6}	2.303×10^{7}	1.383 $\times 10^{-4}$	1.024×10^{2}	1.051×10^{4}	
125,000	23.674	31.792	28.7	476.0	2.586×10^{4}	7.936	3.750×10^{-3}	9.651×10^{-6}	4.063×10^{-3}	2.970×10^{12}	$1.447 \times 10^{3}{ }^{7}$	7.827×10^{-8}	1.849 $\times 10^{7}$	1.761×10^{-9}	8.218×10^{8}	1.075×10^{2}	
130,000	24.621	31.77	28.	$4{ }^{496 .}$	2.702×10^{4}	6.574	3.106×10^{-3}	7.655×10^{-8}	3.223×10^{-3}	2.357×10^{42}	1.479×10^{3}	9.663×10^{-8}	1.499×10^{7}	$2.219 \times 10^{-}$	$6.662 \times 10^{\circ}$	1.098×10^{8}	
$\frac{135,000}{14000}$	25.568	31.761	28.73	517.7	2.818×10^{4}	5.490	2.594×10^{-3}	6.133×10^{-8}	2.582×10^{-2}	$\frac{1,889 \times 10^{32}}{1529}$	$1.510 \times 10^{2} 1$	1.231×10^{-4}	1.227×10^{7}	2.769×10^{-4}	$5.453 \times 10^{*}$	1.122×10^{3}	
140,000 145,000	26.515	31.746	28.72	538.6	2.935×10^{4}	4.620 3.914	2.183×10^{-5}	4.958×10^{-8}	2.088×10^{-3}	$1.528 \times 10^{\text {at }}$	$1.540 \times 10^{\text {² }}$	1.522×10^{-6}	1.012×10^{7}	2.423×10^{-4}	4.498×10^{6}	1.144×10^{5}	
145,000 150,000	27.462	31.731	28.71	559.5	3.051×10^{4} 3 3	3.914	1.850×10^{-3} 1.577×10^{-2}	4.043 $\times 10^{-8}$	1.702×10^{-3}	1.246×10^{11}	$1.570 \times 10^{*}$	1.865×10^{-4}	8.417×10^{8}	4.197×10^{-1}	3.741×10^{6}	1.166×10^{9}	
155,000	29.356	$\frac{31.716}{31.701}$	28.69	580.4	$\left\|3.168 \times 10^{4}\right\|$	2.863	$\frac{1.577 \times 10^{-2}}{1.353 \times 10^{-3}}$	$\frac{3.322 \times 10^{-6}}{2.449 \times 10^{-6}}$	$\frac{1.399 \times 10^{-3}}{1.158 \times 10^{-3}}$	$\frac{1.024 \times 10^{21}}{8.482 \times 10^{20}}$	$\frac{1.600 \times 10^{9}{ }^{2} 2}{1.628 \times 10^{5} 2}$	$\frac{2.269 \times}{2.740 \times}$	$\frac{7.051 \times 10^{6}}{5.941 \times 10^{8}}$	5.106×10^{-4}	$\frac{3.134 \times 10^{8}}{2640 \times 10^{6}}$	$\frac{1.188 \times 10^{3}}{120 \times 10^{8}}$	
160,000	30, 303	31.686	28.67	622.1	3.402×10^{4}	2.470	1.167×10^{-3}	2.291×10^{-8}	9.647×10^{-4}	$7.071 \times 10^{* 0}$	$1.657 \times 10^{3} 3$	3.287×10^{-4}	$5.941 \times 10^{\circ}$ 5.041	7.396×10^{-4}	2.240×10^{6}	$\begin{aligned} & 1.210 \times 10^{8} \\ & 1.231 \times 10^{4} \end{aligned}$	
164,040	31.068	31,673	28,66	639.0	3.497×10^{4}	2.200	1.040×10^{-3}	1.986×10^{-0}	8.364×10^{-4}	$6.133 \times 10^{* 0}$	1.679×10^{3}	3.790×10^{-4}	4.430×100	8, 528×10^{-4}	969×10^{6}	1.231×10^{2} 1.248×10^{3}	
165,000	31.250	31.670	28.66	639.0	3.497 $\times 10^{4}$	2.140	1.011×10^{-3}	1.933×10^{-6}	8.138×10^{-4}	5.967×10^{20}	$1.679 \times 10^{3} 3^{3}$	3.896×10^{-4}	4.310×10^{8}	8.765×10^{-4}	1.976×10^{6}	1.248×10^{8}	
170,000	32.197	31.655	28.66	639.0	3.409×10^{0}	1.856	8.768×10^{-4}	1.675×10^{-0}	7.054×10^{-6}	5.177×10^{20}	$1.679 \times 10^{3} 4$	$4.494 \times 10^{-}$	$3.736 \times 10^{\circ}$	1.011×10^{-3}	1.660×10^{8}	1.248×10^{8}	
175,000	33.144	31.640	28.66	639,0	3.501×10^{4}	1.609	7.601×10^{-4}	1.452×10^{-0}	6.115×10^{-4}	4.484×10^{20}	1.679×10^{2}	. 183×10^{-4}	3.239×10^{5}	1.166×10^{-2}	$1.440 \times 10^{\circ}$	${ }^{1.248 \times 10^{2}}$	
180,000	34.091	31.625	28.66	639.0	3.502 $\times 10^{4}$	1.395	6.591×10^{-4}	1.259×10^{-0}	5.303×10^{-7}	3.888×10^{20}	$1.679 \times 10^{9} 5$	5.978×10^{-6}	2.809×10^{6}	1.345×10^{-3}	1.248×10^{8}	1.248×10^{2}	
185,000	35.	31.610	28.66	639	3.504×10^{4}	1.210	5.716×10^{-4}	1.092×10^{-6}	4.599×10^{-4}	$3.372 \times 10^{\text {m0 }}$	1.679×10^{3}	6.893×10^{-4}	$2.436 \times 10^{\circ}$	1.551×10^{-4}	$1.083 \times 10^{\text {a }}$	$1.248 \times 10^{\text {a }}$	
190,000	35.985	31.595	28.66	639,0	3.506×10^{4}	1.049	4.958×10^{-4}	9.473×10^{-7}	3.988×10^{-4}	2.925×10^{30}	1.679×10^{3} ?	7.948×10^{-4}	2.113×10^{8}	1.788×10^{-9}	1.389 $\times 10^{\circ}$	1.248 $\times 10^{2}$	
195,000	36.932	31.580	${ }^{28.66}$	639.0	3.507×10^{4}	9101	4.300×10^{-8}	8.217×10^{-7}	3.460×10^{-4}	2.537×10^{20}	1.679×10^{8}	9.163×10^{-1}	1.832×10^{8}	2.062×10^{-7}	8.142×10^{8}	1.248×10^{8}	
196,848	${ }^{37.282}$	31.574	28.66	639.0	3.508 $\times 10^{4}$. 8635	4.080×10^{-4}	7.797×10^{-7}	3.283×10^{-4}	$2.407 \times 10^{* 0}$	$1.679 \times 10^{8} 9$	9.657×10^{-4}	$1.739 \times 10^{\circ}$	2.173×10^{-4}	7.729×10^{8}	1.248×10^{81}	
200,000	37.879	31.565	28.66	628.0	3.448×10^{4}	. 7887	3.727×10^{-4}	7.246×10^{-7}	3.051×10^{-4}	2.237×10^{10}	$1.668 \times 10^{3} 1$	$1.039 \times 10^{-3}{ }^{1}$	1.605×10^{8}	$2.338 \times 10^{-8} 7$	$7.133 \times 10^{\circ}$	$1.237 \times 10^{*}$	

Table 13 (Cont'd)
Latitude, 45°. Engineering Units. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.375 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$.

Height		$\left\|\begin{array}{c} \text { Apparent } \\ \text { Cravity }^{\mathrm{K}^{\prime}} \\ \mathrm{ft} / \mathrm{sec}^{2} \end{array}\right\|$	$\left\|\begin{array}{c} \text { Mean } \\ \text { Mol } W_{t} \\ M \end{array}\right\|$	$\left\|\begin{array}{c} \text { Temp } \\ T \\ { }^{\circ} \mathrm{H} \end{array}\right\|$	Scale Height H ft	Pressure $\stackrel{p}{1 b / f t^{a}}$	Pressure Ratio $\mathrm{P} / \mathrm{p}_{\mathrm{s}}$	Density slug/ft ${ }^{3}$	Density Hatio αp_{0}	NumberDensitynparticles $/ \mathrm{ft}^{*}$	$\left\lvert\, \begin{gathered} \text { Mean Parti- } \\ \text { cle Speed } \\ y \\ \mathrm{ft} / \mathrm{sec} \end{gathered}\right.$	$d=3 \times 10^{-3} \mathrm{~cm}$		$2 \times 10^{-8} \mathrm{~cm}$		Speed of Sound fy/sec	
		Mean Free Path										Mean Colli- sion Freq	an Free Pach	$\begin{array}{\|c\|} \hline \text { Yean Colli- } \\ \text { sion Freq } \end{array}$			
f	mi																
				28.66		3.35	. 6809		6.436×10^{-7}	2.							
21	39.773	31.535	28.66		3.259×10^{4}	. 58	2.766×10^{-4}	$5.697 \times$	2.399	1.759	1.618×10^{3}	1.32	1.2	2.974 $\times 10^{-3}$	5.4		
	40	31.520	28	575.	3.164×10^{4}	. 5011	2.368×10^{-4}	5.025×10^{-7}	2.116×10	1.552×10^{20}	1.594×10^{2}	$8 \times$	$1.064 \times 10^{\text {d }}$	3.371×10^{-3}	4.729×10^{8}		
220,000	41.66	31.505	8.65		3.069×10^{7}	. 4270	18	$4.416 \times$	1.859×10^{-6}	1.363×10^{2}							
225,000	42.614	31.490	28.66		2.914		1.717	3.880×10^{-9}	1.634×10^{-4}	1.	1.5					1.147×10^{3}	
230,000					2.879×10^{4}		$1.443 \times 10^{* 4}$	3.369	1.41	1.040×10^{20}		+	6.797×10	\times	$3.021 \times 10^{\circ}$	1.128×10^{3}	
			28.66	505	$2.784 \times 10^{+}$. 25	1.210×10^{-4}	2.923×10^{-7}	1.231×10^{-8}	9.025	1.493×10^{3}	$2.576 \times$	5.7	5.795×10^{-3}	2.576×10^{8}	1.109×10^{3}	
			28.66	48	2.689×10^{4}	. 2134	1.008×10^{-4}	2.524×10^{-7}	1.063×10^{-4}	$7.792 \times 10^{10}{ }^{\text {tig }}$	1.467×10^{2}	2.983	4.918×10^{8}	6.712	2.186×10^{8}	1.0	
245.000		31	28.66	470.	2.593×10^{4}	. 1767	8.349×10^{-5}	2. 168	9.128	6.698	1.441	3.473	4.149	. 814	$1.844 \times$	1.070×10^{8}	
256. 0000	47,348	31.415	28.66	452.7	2.497×10^{4}	453	6.865	1.852	7.797	5.7	1.414×10^{3}	4.066×10^{-3}	3.	9.148	$46 \times 10^{\circ}$	1.050×10^{9}	
255,0	48	31.400	28.66	435.2	2. 402	. 1186	S. 603	1. 572	$6.619 \times$	4.85	1.386×10^{3}	4.78	2.8	1.	1.28	1.02	
255,902	48.46	31.398	28.66	432.0	2.385	. 1142 S	$5.396 \times$	1.525	$6,422 \times 10^{-3}$	4.709	1.381	4.937	2.797	1.11	1.243×10^{6}	10^{9}	
260,000	49	31.385	28,66	432.0	2.386	9.618	$4.545 \times$	1.284	5.408×10^{-8}	3.966	1.381	5.862	2.356	1.31	1.047	10^{3}	
265	50.189	31.371			2.	$7.801 \times 10^{-2}{ }^{3}$	3.686	. 042	4.38	3.217×10^{10}	1.381	7.22	1.9	1.	8.4	1.026×10^{8}	
0,000	51.136	31.356	28.66		2.388	6.328	2.950×10^{-8}	8.451×10^{-8}	3.558×10^{-6}	2.609	1.381×10^{3}	8.908	. 5.5	2.00	6.8	1.026×10^{9}	
306	51.573	31.34	28.66		2.389	5.746	2.715×10^{-3}	7.674×10^{-8}	3.231×10^{-5}	2.369×10^{10}	1.381	$9.811 \times 10^{-}$	1.4		6.		
5.	52.08				2.427	5.13	2.428×10^{-5}	6.756	2.845	2.09	1.39	1.110×10	. 2		5.570×10^{4}	0^{3}	
280,000	53.030	32	28.39	447.4	2.499	19	1.983×10^{-0}	5.361×10^{-6}	2.257×10^{-8}	1.671	1.412	1.3	1.01	3.130	4.512×10^{4}	+ $10{ }^{3}$	
5,000	53.97	31.31	23,21		2.573	3.449	1.630×10^{-5}	4.282×10^{-6}	1.803×10^{-10}	. 34	1.432	1.731	8.27	3.8	3.677×10^{4}	1.066×10^{2}	
0.000	54.92	31.296		467.4	2.547	2.849	1.364×10^{-8}	3.440×10^{-8}	1.448	108	1.45	2.141×10^{-1}	6.78	4.8	3.014×10^{6}	1.082×10^{3}	
295,000	35.87	31.281	27		2.722	$2.367 \times$. 1118×10^{-3}	2.779×10^{-9}	1.170×10^{-8}	8.830×10^{10}	1.472×10^{3}	2.633×10	5. 59	$5.924 \times$	10	. 098×10^{3}	
300,000	81				2.798	76	9.336×10^{-6}	2.258×10^{-88}	9.508×10^{-6}	7.220×10^{18}	1.493×10^{3}	3.220×10	4.636	7.244×10	2.060×10^{4}		
					2.875	$1.657 \times$	7.832×10^{-6}	1.844×10^{-8}	7.766×10^{-9}	5.935×10^{1}	1.513×10^{8}	$3.917 \times 10^{-}$	3.862×10	8.81	$1.716 \times 10^{\circ}$	1.130×10^{3}	
310,000	712	31.237	27,32	507.5	2.954	1.397×10^{-2}	6.510×10^{-8}	1.514×10^{-0}	$\underline{6.375 \times 10^{-0}}$	4.904×10^{18}	1.533	4.741×10^{-2}	$3.234 \times 10^{*}$	1.06? $\times 10^{-1}$	1.437×10^{4}	$1.146 \times 10^{\text {a }}$	
315,000	59.659	31.222	14		3.033	$1.183 \times$	5.588×10^{-8}	1.249×10^{-4}	5.258×10^{-6}	4.071	1.553	710	2.720×10^{4}		1.209×10^{4}	1.161×10^{3}	
320,000	. 60	31.207	26.97	527.5	3.114	1.006	4.752×10^{-6}	1.035	4.358	3.396×10^{16}	1.573	6.844×10^{-3}	2.290	1.540	$1.021 \times 10^{*}$	1.177×10^{8}	
325,000	61.553	31.193	79	537.	3.195×10^{4}	8.588×10^{-9}	4.058×10^{-8}	8.616×10^{-8}	3.628×10^{-5}	2.846×10^{20}	1.593	8.168×10^{-8}	50×10^{2}	. 838	8.668×10^{3}	1.193×10^{5}	
330,000	62.500	31	26.61		3.278	$7.362 \times$	3.479×10^{-8}	7.204×10^{-4}	3.033×10^{-6}	$2.3,95 \times 10^{18}$	1.613	. 74	1.662×10^{4}	2.184	7.387×10^{2}	1.209×10^{3}	
335,000	63.44	31.163	26.43	557.5	3.362	6.336	2.994×10^{-9}	6.048	2.546×10^{-6}	2.024×10^{18}	1.633×10^{5}	1.14	1.422×10^{4}	2.56	$6.320 \times 10^{\text {a }}$	1.226×10^{3}	
340,000	64.394	31.148	26.26	567.5	$3.447 \times$	$5.474 \times$	2.586×10^{-6}	5.098×10^{-8}	2.146×10^{-6}	1.718×10^{38}	1.654×10^{3}	. 353×10^{-1}	. 222×10^{4}		5.431×10^{3}	1.242×10^{8}	
345,000	34	31.134	26.08	577.5	3.533	4.746	2.242×10^{-9}	4.314×10^{-9}	1.816×10^{-6}	1.454×10^{10}	1.674×10^{3}	$1.588 \times 10^{-}$	1.054×10^{4}	3.	4.684 $\times 10^{2}$		
350,00	67.235	104	72	587.5 597	$3.621 \times$ $3.710 \times$	4.129	1.951×10^{-8}	3.664×10^{-9}	1.543×10^{-8}	1.252×10^{18}	1.694×10^{3}	1.857×10^{-2}	9.122×10	4.178	4.054×10^{9}	$1.274 \times 10^{\text {s }}$	
	67.235	104	72	\%	$3.710 \times$	$\frac{3.504 \times 10^{-3}}{3.156 \times 10^{-3}}$	103 \times	3.123×10^{-0}	1.315×10^{-8}	1.074×10^{1}	1.714×10^{5}	2.164×10^{-1}	7.921×10^{3}	4.869 5.10^{-1}	3.520×10^{9}	1.290×10^{3}	
365,000						3.156×10^{-3} 2.773×10^{-3}	$91 \times$	2.672×10^{-9} 2.293×10^{-8}	1.125×10^{-8}		1.734×10^{3}	2.512×10^{-1}	6,902 $\times 10^{8}$	5. 652	3.068×10^{8}	306 $\times 10^{8}$	
370,000	70.076	31.060	25.19	627.6	3.984×10^{0}	$2.443 \times$. 154×10^{-8}	1.974×10^{-8}	8.312×10^{-7}	6.935×10^{17}	. 75	2.906	6.038 $\times 10^{9}$	6.540	2.684×10^{3}	1.323×10^{3}	
375,000	71.023	31.046	25.01	637.6	4.078×10^{4}	2.159×10^{-1}	1.020×10^{-5}	$1.705 \times 10^{*-8}$	7.180×10^{-9}	6.033	1.796 $\times 10^{8}$	3.853	\%.295		$\times 10^{3}$	$\frac{1.339 \times 10^{3}}{356 \times 10^{8}}$	
380,000	71.970	31.031	24.84	647.6	4.174×10^{4}	1.914×10^{-3}	9.043×10^{7}	1.478×10^{-4}	6.221×10^{-2}	5.264×10^{1}	1.816×10^{3}	4.416×10^{-1}	4.112×10^{2}	. 936	. 828×10^{3}	1.372×10^{8}	
385,000	72.917	31.016	24.66	657.6	4.271×10^{4}	1.701×10^{-3}	8.037×10^{-7}	$\underline{1.284 \times 10^{-8}}$	5,406 $\times 10^{-7}$	4.607×10^{17}	1.837×10^{2}	. 045×10^{-1}	3.641×10^{3}	. 135	1.618×10^{3}	1.372×10^{9} 1.389 108	
390	${ }^{73}$	31.00	24.48		4.370×10^{8}	1.516×10^{-3}	7.162×10^{-7}	1.119×10^{-8}	4.711×10^{-7}	4.044×10^{17}	1.857×10^{8}	5. $748 \times 10^{-}$	3.231×10^{2}	,	$1.436 \times 10^{\text {d }}$	$\frac{1.406 \times 10^{9}}{}$	
3.6	74	31.991	24.35	675.0	$4.444 \times 10^{4} 1$	1.394×10^{-3}	6.587×10^{-7}	1.012×10^{-0}	4.263×10^{-7}	3.679×10^{17}	1.873×10^{8}	6.318×10^{-1}	2.964×10^{0}	1.422	1.317×10^{9}		
395,000	74.81	30.987	24.35	677.9	4. 463	1.354	6.397×10^{-7}	9.790×10^{-1}	4.122×10^{-7}	3.558×10^{17}	1.890×10^{5}	6.534×10^{-1}	2.893×10^{4}	1.470	1.286×10^{8}	1.421×10^{2}	
400,000	75.	30.972	24.35	688.9	$4.538 \times 10^{4} 1$	$1.212 \times 10^{-3} 5$. $725 \times$	8.620×10	3.629×10^{-7}	3.132×10^{17}	1.858×10^{-1}	. 421×10^{-1}	2.558×10^{9}	1.670	1.137×10^{8}	$1.432 \times 10^{*}$	

Table 13 (Cont'd)
Latitude, 45°. Engineering Units. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.375 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$.

Height h			$\begin{gathered} \text { San } \\ \text { mol } \\ M \\ \hline \end{gathered}$	$\begin{gathered} \text { Temp } \\ T_{\mathrm{R}} \\ \hline \end{gathered}$	$\begin{gathered} \text { Scale } \\ \text { Heikt } \\ \text { H } \\ \text { ft } \end{gathered}$	Pressure $\stackrel{p}{1 b^{\prime} / \mathrm{ft}^{*}}$	Pressure Ratio p / p_{0}	Density ${ }_{\text {slug } / \mathrm{ft}^{\circ}}$,	Density Ratio$\qquad$$\begin{array}{r} \sigma \\ p / p_{a} \\ \hline \end{array}$	$\begin{array}{\|c\|} \text { Number } \\ \text { Density } \\ n \\ \text { particles } / \mathrm{ft}^{\bullet} \\ \hline \end{array}$		$d=3 \times$		$\mathrm{d}^{2} 2 \times 10^{-8 \mathrm{~cm}}$		Speed of Sound $\mathrm{ft} / \mathrm{sec}$
		Mean Free Path $\stackrel{L}{\mathrm{ft}}$										Mean Colligion Freq $1 / \mathrm{sec}$				
ft	mi															
4.500×10^{6}	85.227	30.827	24.35	799.4	5.291×100	4.37 $\times 10^{-4}$	2.06×10^{-7}	2.68 $\times 10^{-10}$	1.13×10^{-7}	9.75×10^{16}	2.04×10^{2}	2.38	8.55	5.36		
$5.000 \times 1{ }^{18}$	94.697	${ }^{30.682}$	24.35	909.9	$6^{6.050 \times 100^{1}}$	1.81×10^{-4}		9.75 $\times 10^{-11}$		3.55×10^{10}	2.17×100^{3}	2.55	3.32×1	1.47	1.48×10^{2}	
5.280×10^{6}	100.00	30.602	24.35	971.	6.478×10^{4}	$16 \times 10^{-}$	5.48×10^{-8}	5.82 $\times 10^{-12}$	2.45×10^{-8}	2.12×10^{10}	$2.25 \times 10^{1} 1$	10×10	2.05×102	2.47×10		1.54 1.704 $\times 100^{3}$
$5.500 \times 10^{\circ}$	104, 17	30.539	24.35	1020	6.817 $\times 10^{00}$	$8.30 \times 10^{10-6}$	3.92×10^{-8}	3.99 $\times 10^{-11}$	$1{ }^{1.68} \times 10^{10-8}$	1.45×10^{181}	2.30×10^{1}	. 60×10	1.44×10^{2}	3.61 $\times 10$	6.38×10	
$6.000 \times 10^{\circ}$	113.64	30.396	24.35	1131	7.590×10^{4}	$4.14 \times 10^{10-5}$	1.96×10^{-8}	$1.79 \times 10-18$	7.754	6.51×10^{18}	2,42 $\times 10^{3}$		6.79 $\times 10$	8.03×10	3.02×10	
$6.500 \times 10^{\circ}$	123.11	30.255	24,35	1241	8.371×10^{4}	2.21×10^{-6}	1.04×10^{-8}	8.73 $\times 10^{-18}$	3.68×10^{-8}	3.17×10^{16}	$2.54 \times 10^{3} 7$	7.33×10	$1.4 .46 \times 10$.10	${ }^{8}$	1.54×10	
$7.000 \times 10^{\circ}$	132.58	30.114	24.35	1352	9.158×100	1.25 $\times 10-8$	5.91×10^{-6}	4.53 $\times 10^{-12}$	1,91 $\times 10-8$	1.65 ${ }^{1010}$	$2.65 \times 10^{2}{ }^{2}$	1.41×10^{2}		3.17×10^{2}		
$7.500 \times 10^{\circ}$	142.05	29.975	24.35	1462	9.953 $\times 104{ }^{1}$	7.40 $\times 10^{-6}$	3.50×10^{-8}	2.48×10^{-18}	1.04×10^{-9}	9.02×10^{14}	$2.76 \times 10^{3} 2$	$2.58 \times 10^{\circ}$	1.07×10	5.80×10^{2}	4.75	
$8,000 \times 10^{\circ}$	151.57	29.836	24.35	1573	1.075×10^{6}	$4.57 \times 10-6$	$2.16 \times 10-9$	1.42 $\times 10^{-12}$	5.98×10^{-10}	$5.16 \times 10^{1+}$	$2.86 \times 10^{0} 4$	4.50×10^{2}	6.35	$1.0 r \times 10^{5}$		
$8.500 \times 10^{\circ}$	160.98	29.699	24.35	1683	1.156×100	2.92×10^{-8}	1.38×10^{-8}	${ }^{8.50} \times 10^{-18}$	3.58×10^{-80}	3.09×10^{14}	$2.96 \times 10^{3} 7$	7.52×10^{2}	3.93	${ }^{1.69} \times 10^{0}$	1.75	
9.000×10^{0}	170.45	29.562	24.35	1794	1.238×100	1.92×10^{-6}	$9.07 \times 10^{10-40}$	5.25×10^{-13}	2.21 $\times 10-80$	1.97×1014	${ }^{3.05} \times 10^{9} 1.12$	1.22×10^{3}	2.51		1.11	
$9.500 \times 10^{\circ}$	179.92	29.426	24.35	1994	1.320×100	1.30×10^{-6}	$6.14 \times 10{ }^{6-10}$	3.35 $\times 10^{-13}$	1.41×10.10	1.27×10^{12}	$3.15 \times 10^{*} 12$. 91×10^{3}	1.65	${ }^{4.29 \times 10^{8}}$	7.34×10^{-4}	
9.842×10^{8}	186.41	29.334	24.35	1980	$1.377 \times 10^{8} 1$	1.01×100^{-6}	.77	$2.50 \times 10 \times$	1.05×10^{-48}	9.09×10^{10}	$3.21 \times 10^{0} 2$	56×10^{3}	1.25	5.75 $\times 10^{3}$	5.57×10^{-2}	

Table 14
values of temperature, pressure, and density up to the fa layer
Latitude, 45°. Metric Units. $p_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{9}$

Table 14 (Cont'd)
Latitude, 45°. Metric Units. $p_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height h		Apparent Gravity $\mathrm{cm} / \mathrm{sec}^{2}$	$\begin{gathered} \text { Mean } \\ \text { Hol Wt } \mathrm{wt} \\ \$ \end{gathered}$	$\begin{gathered} \text { Temp } \\ T \\ Y \\ \hline \end{gathered}$	Scale Height H km	Pressure millibars	Preasure fatio P / P_{9}	Density$\mathrm{gm} / \mathrm{cm}^{4}$	Density Ratio ${ }_{f} / \rho_{a}$	NunberDentitynnarticles/cman	Mean Parti- cle Speed an/ sec	d. $3 \times 10^{-7} \mathrm{~cm}$		$d=2 \times 10^{-8} \mathrm{~cm}$		Speed of Sound $\mathrm{cn} / \mathrm{sec}$
		Mean Free Path L em										$\left\|\begin{array}{c} \text { Mean Colli- } \\ \text { sion Freq } \\ z / \mathrm{zec} \end{array}\right\|$	Mem FreePathLcm	$\left\lvert\, \begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ v \\ 1 / \mathrm{sec} \end{gathered}\right.$		
$\mathrm{km}^{\text {m }}$	mi															
62.485	38.82	961.64	28.66	339.1	. 222	1 $\times 10^{-1}$	3.218×10^{-4}	3.317	2.710×10^{-4}	7.017	5.002×10^{4}	3.566×10^{-3}	93 $\times 10^{6}$	8.023×10^{-1}	6.236×10^{-1}	
64.009	39.77	961.18	28.6	329	9.933	2.804×10^{-1}	2.766×10^{-4}	2.936×10^{-7}	2.399×10^{-4}	6.212×10^{18}	4.932×10^{4}	4.028×10^{-1}	$1.224 \times 10^{\circ}$	9.064×10^{-1}	$5.440 \times 10^{\circ}$	$\begin{aligned} & 3.716 \times 10^{4} \\ & 3.662 \times 10^{4} \end{aligned}$
65.553	40.		28.66	319.7	9.644	2. 400×10^{-1}	2.368×10^{-4}	2.590×10^{-7}	2.116×10^{-4}	3.479×10^{1}	4.859×10^{4}	4.567×10^{-3}	1.064×10^{8}	1.028×10^{-1}	4.729×10^{8}	$\begin{aligned} & 3.662 \times 10^{4} \\ & 3.608 \times 10^{4} \\ & \hline \end{aligned}$
67.057 68.581	$\begin{aligned} & 41.667 \\ & 42614 \end{aligned}$	959.81	28.66	309.9	${ }^{9.354}$	2.045×10^{-1}	$2.018 \times 10^{10^{-6}}$	2.276×10^{-7}	1.859×10^{-4}	4.815×10^{18}	4.782×10^{4}	5.197×10^{-8}	9.202×10^{6}	1.169×10^{-1}	4.090×10^{8}	3.553×10^{4}
$\begin{aligned} & 6.581 \\ & 70.105 \end{aligned}$	42.614 43.561	959.81 999.36	28.66	300, 2	. 65	1.740×10^{-1}	1.717×10^{-4}	2.000×10^{-7}	1.634×10^{-4}	4.230×1	4.706×10^{4}	5.915×10	7.956×10^{0}	1.331×10^{-1}	3.536×10^{4}	3.496×10^{4}
71.629	44.508	958.90	2.	280.7	486	1.226×10^{-1}	1.210×10^{-6}	1.736×10^{-7}	$\frac{1,418 \times 10^{-4}}{1,231 \times 10^{-4}}$	$\frac{3.673 \times 10^{18}}{3.187 \times 10^{28}}$	$\frac{4.630 \times 10^{4}}{4.551 \times 10^{4}}$	$\frac{6.811 \times 10^{-1}}{7.851 \times 10^{-8}}$	$\frac{6.797 \times 10^{8}}{5796 \times 10^{8}}$	$\frac{1.533 \times 10^{-1}}{1.766 \times 10^{-1}}$	3.021×10^{8}	3.439×10^{4}
153	45.455	958.45	28.66	271.0	8.196	1.022×10^{-1}	1.008×10^{-4}	1.301×10^{-7}	1.063×10^{-4}	2.752×10^{10}	$4.551 \times 10^{*}$ 4.471×10^{4}	$\left[\begin{array}{l} 7.851 \times 10^{-3} \\ 9.093 \times 10^{-7} \end{array}\right.$	$\left\lvert\, \begin{aligned} & 5.796 \times 10^{\circ 8} \\ & 4.918 \times 10^{4} \end{aligned}\right.$	$\begin{aligned} & 1.766 \times 10^{-1} \\ & 2.046 \times 10^{-1} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 2.576 \times 10^{9} \\ 2.186 \times 10^{4} \end{array} \right\rvert\,$	
74.677	46.402	957	28.66	261.2	7.903	8.462×10^{-2}	8.349×10^{-8}	1.117×10^{-7}	9.128×10^{-8}	2.364×10^{18}	$4.392 \times 10^{\text {a }}$	1.059 $\times 10^{-1}$	$4.918 \times 10^{\circ}$ $4.149 \times 10^{\circ}$	2.046×10^{-1} 2.382×10^{-1}	$\begin{aligned} & 2.186 \times 10^{4} \\ & 1,844 \times 10^{8} \end{aligned}$	$\begin{aligned} & 3.322 \times 10^{4} \\ & 3.262 \times 10^{4} \end{aligned}$
76, 201	47.348	957.54	. 66	251.5	7.611	6.958×10^{-8}	6.865×10^{-8}	9.544×10^{-8}	7.797×10^{-8}	2.019×10^{18}	4.310×10^{4}	1.239×10^{-1}	3.478×10^{8}	2.788×10^{-1}	1.546×10^{8}	3.200×10^{4}
	48.	957	28.66	241.8	321	5.679×10^{-8}	5.603×10^{-8}	8.103×10^{-3}	6.619×10^{-1}	1.714×10^{18}	4.225×10^{4}	1. 460×10^{-1}	2.894×10^{8}	3.285×10^{-1}	1.286×10^{9}	3.138×10^{4}
	48	957.00	28.66	240.0	7.259	5.469×10^{-1}	5.396×10^{-8}	7.860×10^{-4}	6.422×10^{-0}	1.663×10^{18}	4.209×10^{4}	1.505×10^{-1}	2.797×10^{8}	3.386×10^{-1}	$1.243 \times 10^{\circ}$	3.126×10^{4}
80.773	49.2 50.18					4.606×10^{-2} 3.736×10^{-2}	4.545×10^{-8}	6.620 ${ }^{10^{-8}}$	5.400×10^{-0}	1.400×10^{10}	4.209×10^{4}	1.787×10^{-1}	2.356×10^{8}	4.020×10^{-1}	1.047×10^{6}	3.126×10^{4}
82.297	51.136	955.72	28.66	240.0	7.279	3.031 $\times 10^{-3}$	2.990×10^{-8}	4.356 $\times 10^{-8}$ 4.356	+ 4.386×10^{-8}	l	4.209×10^{4} 4.209×10^{4}	2.203×10^{-1} 2.715×10^{-1}	1.911×10^{8} 1.550×10^{8} 1.8	$4.956 \times$	8.493×10^{4}	3.126×10^{4}
83.000	51.573	955.51	28.65	240.0	281	2.752×10^{-9}	2.715×10^{-8}	3.956×10^{-8}	3.231×10^{-8}	8.367×10^{14}	4.209×10^{4}	$\frac{2.790 \times 10^{-1}}{2.9}$	1.408×10^{8}	6.728 $\times 10^{-1}$	6.858×10^{4}	104
83.821	52.	5.26	55	243.0	7.398	2.461×10^{-8}	2.428×10^{-8}	3.482×10^{-8}	2.845×10^{-0}	. 391×10^{14}	4.243×10^{4}	3.385	1.253×10^{8}	7.617×10	5.570×10^{4}	3. 152×10^{4}
65, 345	53.030	4.81	28.39	248.6	618	2.010×10^{-4}	1.983×10^{-8}	$2.763 \times 10^{-*}$	2.257×10^{-8}	5.901×10^{4}	4.304×10^{4}	4.240×10^{-1}	1.015×10^{8}	$9.540 \times$	4.512×10^{4}	3.152×10^{4} 3.201×10^{4}
86.869	53.977	36	28.21	254.1	7.841	1.652×10^{-2}	1.630×10^{-8}	2.207×10^{-66}	1.803×10^{-6}	4.743×10^{14}	4.365×10^{4}	5.276×10^{-1}	8.274×10^{4}	1.187	$\frac{3.677 \times 10^{4}}{}$	3.249×10^{4}
393	54.924	3.91	28.03	259.7	8.067	1.365×10^{-1}	1.364×10^{-5}	1.773×10^{-8}	1.448×10^{-5}	3.834×10^{14}	$4.426 \times 10^{\text {d }}$	6.526×10^{-1}	6.782 $\times 10^{4}$	1.466	3.014×10^{4}	3.298×10^{4}
89.917	55.871	953,45	27.85	265.2	8. 297	1.133×10^{-3}	1.118×10^{-8}	1.432×10^{-8}	1.170×10^{-8}	3.118×10^{44}	4.488×10^{4}	8.025×10^{-1}	5.593×10^{4}	1.806	2.486×10^{4}	3.346×10^{4}
91.441	56, 1818		27.68	270.8	8.529	9.462×10^{-8}	9.336×10^{-8}	1.164×10^{-8}	9.508×10^{-8}	2.550×10^{34}	4.549×10^{4}	9.813×10^{-1}	4.636×10^{4}	2.208	2.060×10^{4}	3.394×10^{4}
94.40	${ }_{58}^{57.765}$	55		6.4	764	7.938×10^{-3}	7.832×10^{-8}	9. 507×10^{-1}	7.766×10^{-8}	2.096×10^{14}	4.612×10^{4}	1.194	3.862×10^{4}	2.686	$1.716^{4} \times 10^{4}$	3.443×10^{4}
94.489	58,712	952.10	32	281.9	003	6.690×10^{-3}	6.610×10^{-8}	$1.804 \times 10^{-*}$	6.375×10^{-8}	1.732×10^{24}	4.673×10^{5}	1.445	3.234×10^{4}	3.251	1.437×10^{4}	3.492×10^{4}
96.013	59.659	951.65	27.14	287.5	9.245	5.664×10^{-3}	5.588×10^{-6}	6.437×10^{-9}	5.258×10^{-8}	1.438×10^{14}	4.734×10^{4}	1.740	2.720×10^{6}	3.916	1.209×10^{4}	3.540×10^{4}
97.537	${ }^{60}$		26.97	.	9.491	4.817×10^{-2}	4.752×10^{-0}	$5.335 \times 10^{-*}$	4.358×10^{-8}	1.199×10^{14}	4.795×10^{4}	2.086	2.298×10^{4}		1.021×10^{4}	3.589×10^{4}
99.061	61. 553	950.75	79	298.6	9.739	4.113×10^{-3}	4.058×10^{-6}	$4.441 \times 10^{-*}$	3.628 $\times 10^{-0}$	1.005×10^{14}	4.856×10^{4}	2.4	1.950×10^{4}	5. 602	8.668×10^{2}	3.638×10^{4}
100.58	62.500	950.30	61	304.2	9.991	3.526×10^{-1}	3.479×10^{-8}	3.713×10^{-8}	3.033×10^{-8}	8.459×10^{22}	4.916×10^{4}	2.958	1.662×10^{4}	6.655	7.387×10^{2}	3.686×10^{4}
102.11	63.447	949.85	43	309.7	1.025×10	3.034×10^{-3}	2.994×10^{-6}	3.117×10^{-8}	2.546×10^{-3}	7.144×10^{12}	4.577×10^{4}	3.500	1.422×10^{4}	7.875	6.320×10^{8}	$3.735 \times 10^{*}$
103.63	64.	949.40	26.26	315.3	1.051×10	2.621×10^{-3}	2.586×10^{-8}	2.528×10^{-9}	2.145×10^{-8}	6.067×10^{18}	5.040×10^{4}	4. 125	1.222×10^{4}	9,280	5.432×10^{8}	3.784×10^{4}
105.16	6s	948.95	26.	320.8	1.077×10	2.273×10^{-9}	2.242×10^{-6}	2.223×10^{-9}	1.816×10^{-8}	5.169×10^{17}	5.102×10^{4}	4.841	1.054×10^{4}	1.089	4.684×10^{4}	3.834×10^{4}
106.68	66.288	948.50	25.90	32	1.104×10	1.977×10^{-8}	1.951×10^{-4}	1.889×10^{-9}	1.543×10^{-8}	4.421×10^{14}	5.163×10^{4}	5.660	9.122×10^{1}	1.274×10	$4.054 \times 10^{\text {8 }}$	3.883×10^{4}
108.20	67.235	948.06	. 5	332.0	1.131 $\times 10$	1.726×10^{-3}	$1.703 \times 10^{-*}$	1.510×10^{-7}	$1.315 \times 10^{* *}$	$3.794 \times 100:$	5.224 $\times 10^{4}$	6.595	7.921×10^{1}	1.484×10	3.520×10^{2}	3.933×10^{4}
109.73	68.182	947.61	25.55	337.5	1.158×10	1.512×10^{-8}	1.491×10^{-0}	1.377×10^{-6}	1.125×10^{-6}	3.268×10^{18}	5.285×10^{6}	7.657	6.902×10^{8}	1.723×10	3.068×10^{1}	3.982×10^{6}
111.25	69.129	47.16	25.37	343.1	1.186×10	1.328×10^{-3}	1.310×10^{-8}	1.182×10^{-9}	9.654×10^{-7}	2.824×10^{14}	5.349×10^{4}	8.859	$6.038 \times 10^{\prime \prime}$	1.993×10	$2.684 \times 10^{\text {- }}$	4.032×10^{4}
$\underline{12.78}$	70.075	946.72	25.19	348.6	1.214×10	1.170×10^{-3}	1.154×10^{-6}	1.018×10^{-8}	8.312×10^{-7}	2.449×10^{13}	$5.410 \times 10 \pm$	1.022×10	$5.295 \times 10^{\prime \prime}$	2.299×10	$2.353 \times 10^{*}$	4.082×10^{4}
114.	71.	946	25.01	354.2	1.243×10	1.034×10^{-2}	1.020×10^{-6}	8.790×10^{-10}	7.180×10^{-7}	2.130×10^{13}	5.474×10^{4}	1.175×10	4.661×10^{8}	2.643×10	2.072×10^{4}	4.132×10^{4}
115. 82	71.970	945.82	24.84	359.8	1.272×10	9.166×10^{-4}	9.043×10^{-7}	7.615×10^{-10}	6.221×10^{-7}	1.859×10^{11}	5.535×10^{4}	1.346×10	4.112×10^{3}	3.028×10	$1.828 \times 10^{*}$	4.182×10^{4}
117.35	72,917	945.38	24.65	366. 3	1.302×10	$8.145 \times 10^{-*}$	8.037×10^{-7}	6.618×10^{-10}	5. $406 \times 10^{+7}$	1.627×10^{13}	5.599×10^{4}	1.538×10	3.641×10^{4}	3.460×10	$1.618 \times 10^{\prime \prime}$	4.233×10^{4}
118.87	73.854	944.93	24.48	370.9	1.332×10	7.259×10^{-4}	7.162×10^{-7}	5.767×10^{-10}	4.711×10^{-7}	1.428×10^{18}	5.660×10^{4}	1.752×10	3.231×10^{4}	3.942×10	$1.436 \times 10^{\text {P }}$	4.204×10^{4}
120.00	74.564	944.60	24.35	375.0	1.354×10	5.677×10^{-4}	6.587×10^{-7}	5.218×10^{-30}	$4.263 \times 10^{*}$	1.299×10^{13}	$5.708 \times 10 *$	1.926×10	2.964×10^{4}	4.333×10	$1.317 \times 10^{\prime \prime}$	4.322×10^{4}
120.40	74.811	944.49	24.35	376.6	1.360×10	8.484×10^{-4}	6.397×10^{-7}	5.046×10^{10}	4.122×10^{-7}	1.256×10^{18}	5.761×10^{4}	1.992×10	2.893×10^{8}	4.481×10	1.286×10^{8}	4.331×10^{4}
121.92	${ }^{75} 5.758$	944.04	24.35	382.7	1.383×10	5.802×10^{-4}	5.725×10^{-7}	4.443×10^{-10}	3.629×10^{-7}	1.106×10^{19}	5.785×10^{4}	2.262 $\times 10$	$2.558 \times 10^{+}$	5.089×10	1.137×10^{3}	4.365 $\times 10^{4}$
137.16	85. 227	939.60	24.35	4.1	1.613×10	2.09×10^{-4}	2.06×10^{-7}	$1.38 \times 10^{\text {20 }}$	1.13×10^{-7}	3.44×10^{11}	6.21×10^{-4}	7.27×10	$8.55 \times 10^{*}$	1.64×10^{4}	$3.80 \times 10^{\prime \prime}$	4.70×10^{4}
152.40	94.	935.20	24.35	505.5	1.844×1	8.67×10^{-8}	8.55×10^{-8}	5.02×10^{-1}	11×10^{-1}	1.25	63	2.00×10	3.32	4.49×10	1.48	5.02

Table 14 (Cont'd)
Latitude, 45°. Metric Units. $P_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-8} \mathrm{gm} / \mathrm{cm}^{3}$

$\begin{gathered} \text { Height } \\ h \end{gathered}$		$\left\{\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ \varepsilon^{\prime} \\ \mathrm{cma}^{\prime} \mathrm{sec}^{2} \end{array}\right.$	Mean Mol Wt M	$\begin{array}{\|c} \text { Temp } \\ T \\ \% \end{array}$	Scale Height $H$$\mathbf{k m}$	Pressure millibars	Pressure Ratio p / p_{a}	Density$\begin{gathered} \rho \\ \mathrm{Bn} / \mathrm{cm}^{8} \end{gathered}$	Density Ratio ρ / ρ_{a}		Mean Particle Speed $\mathrm{cm} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-8} \mathrm{~cm}$		Speed of Sound $\mathrm{cm} / \mathrm{sec}$
		Mean Free Path L cm										$\begin{array}{\|c\|} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \\ 1 / \mathrm{sec} \end{array}$	Mean FreePathLcm	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \nu \\ 1 / \mathrm{sec} \end{gathered}$		
km	${ }^{\text {mi }}$															
160.94	100.00	932.75	24.35	539.9	1.975×10	5.53×10^{-8}	5.48×10^{-8}	$3.00 \times 10^{-}$	2.45×10^{-8}	7.49×10^{11}	6.85×10^{4}	3.34×10^{8}	2.05×10^{2}	7.52×10^{1}	9.11×10	5.19×10^{4}
167.64	104.17	930.83	24.35	566.9	2.078×10	3.98×10^{-8}	3.92×10^{-8}	2.05×10^{-11}	1.68×10^{-3}	5.12×10^{11}	7.02×10^{4}	4.89×10^{2}	1.44×10^{2}	1.10×10^{9}	6.38×10	
182.88	113.54	926.48	24.35	628.3	2.313×10	1.98×10^{-8}	1.96×10^{-8}	9.22×10^{-12}	7.54×10^{-8}	2.30×10^{11}	7.39×10^{4}	1.09×10^{8}	6.79×10	2.45×10^{8}	3.02×10	
198.12	123.11	922.171	24.35	689.7	2.551×10	1.06×10^{-5}	1.04×10^{-8}	4.50×10^{-12}	3.68×10^{-8}	1.12×10^{11}	7.74×10^{4}	2.24×10^{8}	3.46×10	5.03×10^{2}	1.54×10	
213.36	132.58	917.88	24.35	751.0	2.791×10	5.99×10^{-6}	5.91×10^{-8}	2.33×10^{-12}	1.91×10^{-8}	5.83×10^{10}	8.07×10^{4}	4.29×10^{3}	1.88×10	9.66×10^{3}	8.35	
228.60	142.05	913.63	24.35	812.4	3.034×10	3.54×10^{-0}	3.50×10^{-8}	1.28×10^{-18}	1.04×10^{-8}	3.19×10^{10}	8.40×10^{4}	7.86×10^{8}	1.07×10	1.77×10^{4}	4.75	
243.84	151.57	909.41	24.35	873.8	3.278×10	2.19×10^{-6}	2.16×10^{-0}	7.31×10^{-19}	5.98×10^{-10}	1.82×10^{10}	8.71×10^{4}	1.37×10^{4}	6.35×10	3.09×10^{4}	2.82	
259.08	160.98	905.21	24.35	935.2	3. 525×10	1.40×10^{-6}	1.38×10^{-0}	4.38×10^{-13}	3.58×10^{-10}	1.09×10^{10}	9.01×10^{4}	2.29×10^{4}	3.93×10	5.16×10^{4}	1.75	
274.32	170.45	901.05	24.35	996.	3.773×10	9.20×10^{-7}	9.07×10^{-10}	2.70×10^{-13}	2.21×10^{-10}	6.75×10^{9}	9.30×10^{4}	3.71×10^{4}	2.51×10	8.35×10^{4}	1.11	
289.56	179.92	896.91	24.35	1058	4.024×10	6.23×10^{-7}	6.14×10^{-10}	1.73×10^{-12}	1.41×10^{-10}	4.31×10^{8}	9.59×10^{4}	5.81×10^{4}	1.65×10	1.31×10^{8}	7.34×10^{-1}	
300.00	186.41	894.09.	24.35	1100	4.197×10	4.84×10^{-7}	4.77×10^{-10}	1.29×10^{-15}	1.05×10^{-10}	$3.21 \times 10^{\circ}$	9.78×10^{4}	7.79×10^{4}	1.25×10	1.75×10^{6}	5.57×10^{-2}	

1 millibar (mb) $=10^{9}$ dynes $/ \mathrm{cm}^{8}=0.750 \mathrm{~mm}$ of Hg

FIG. $10(0)$

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F LAYER.
LATITUDE 0°. ENGINEERING UNITS.
FIG. 10 (b)

B

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F_{2} LAYER. LATITUDE 0°. ENGINEERING UNITS.

FIG. 10 (c)

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F LAYER.

FIG. II (0)

N

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F LAYER. LATITUDE 0°. METRIC UNITS.

FIG. II (b)

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F LAYER.

FIG. II (c)

FIG. 12 (a)

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F_{2} LAYER. LATITUDE 45° ENGINEERING UNITS.

FIG. I2 (b)

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F 2 LAYER.
LATITUDE 45° METRIC UNITS. LATITUDE 45.' METRIC UNITS.

FIG. 13 (a)

VERTIGAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO THE F_{2} LAYER. LATITUDE 45. METRIC UNITS.

FIG. 13 (b)

VERTICAL DISTRIBUTION OF THE SONIC VELOCITY FROM SEA LEVEL UP TO 100 MILES. LATITUDE 0°. ENGINEERING UNITS.

FIG. 14

VERTIGAL DISTRIBUTION OF THE SONIC VELOCITY FROM SEA LEVEL UP TO 160 KM . LATITUDE 0°. METRIG UNITS.

FIG. 15

VERTICAL DISTRIBUTION OF THE SONIC VELOCITY FROM SEA LEVEL UP TO 100 MILES. LATITUDE 45°. ENGINEERING UNITS.

FIG. 16

VERTICAL DISTRIBUUTION OF THE SONIC VELOCITY FROM SEA LEVEL UP TO 160 KM . LATITUDE 45°. METRIC UNITS.

FIG. 17

II - THE ATMOSPHERE ABOVE THE F_{2} LAYER - MODELS I AND II

Above the F_{2} layer there is little if any direct information available concerning the atmosphere. Although the mass of atmosphere in this region is extremely small compared with the total atmospheric mass, yet the vertical extent of this region of the atmosphere is relatively large compared with the height of the F_{2} layer. In fact as far as the knowledge of the atmosphere is concerned, it might well be divided into two major regions, the region below the F_{2} layer and that above.

In view of the uncertainties and lack of information concerning the properties of the atmosphere above the F_{2} layer, it becomes necessary to analyze this region on the basis of whatever concepts or hypotheses appear reasonable or possible; and it is hardly likely, owing to the present lack of knowledge, that any single concept would prove entirely satisfactory at the present time. The manner in which this region of the atmosphere is analyzed here is based on three different atmospheric models or concepts which are intended to serve as a preliminary approach to the problem. The first atmospheric model is based on the concept that there is a limiting region far beyond the F_{2} layer where the atmosphere is in thermal equilibrium with the interstellar gas. The second model is based on the concept that at a sufficient height above the F_{2} layer the particles begin to move as free bodies in a gravitational field, rising and falling over large distances without colliding with another particle, and that this region is isothermal. The third model is discussed in Part III.

II-A. THE TEMPERATURE DISTRIBUTION AND THE INTERSTELLAR ${ }^{\boldsymbol{+}}$ GAS

Perhaps the first question which arises concerning this region of the upper atmosphere is that of temperature. The temperature rises rapidly from the E layer to the F_{2} layer; and one may ask whether, above the F_{2} layer, the temperature continues to rise, remains more or less constant, or decreases. The answer is certainly not clear, and a consideration of conditions existing in this region is necessarily somewhat hypothetical and speculative. Thus when it is desired to consider the atmosphere above the F_{2} layer, it becomes necessary, in view of the lack of any direct information, to find some means of extrapolation. For example, there are certain conditions which exist in interstellar space, and an attempt may be made to use these as a possible basis for extrapolation. Thus it is known that gas particles exist in interstellar space ${ }^{(39),(40)}$, and it is tempting to make the hypothesis that the outer limit of the atmosphere is defined by the condition that equilibrium exist between the atmospheric gas and the interstellar gas. It is generally recognized (41), (42), (43), (44) that the interstellar gas has a high kinetic temperature of the order of 10,000 to $15,000^{\circ} \mathrm{K}$, and according to the equilibrium hypothesis, it will therefore be assumed in Model I that the outer limit of the atmosphere is in thermal equilibrium with the interplanetary gas particles at this temperature.

[^6]Thus it will be assumed as a first approach that at the outer limit of the atmosphere the atmospheric gas particles have a kinetic temperature of $10,000^{\circ} \mathrm{K}$. In view of the rather hypothetical nature of this approach, a second and perhaps more acceptable atmospheric model will be used in which the limit of the atmosphere is defined by the existence of an outer region where the mean free path becomes so large that the the gas particles begin to establish dynamical orbits. With the first atmospheric model in which it is assumed that the atmosphere at its outer limit is in thermal equilibrium with the interstellar gas at a temperature of $10,000^{\circ} \mathrm{K}$, it is reasonable to suppose that the temperature increases monotonically from the F_{2} layer out to the atmospheric limit; and it will be assumed that this is the case.

The exact form of the vertical temperature distribution must next be decided upon. This of course is somewhat arbitrary; and if we wished, the vertical temperature distribution could be taken as a linear one. However it seems more satisfactory physically to have a temperature distribution such that $d T / d r$ (where r is distance measured from the center of the earth) is smaller at large distances, since this gives more uniform continuity with the limiting conditions. In fact if the analogy is made here with the transfer of heat between two concentric spheres, we are led to the conclusion that $d T / d r$ is proportional to $1 / r^{2}$. Since this relation seems satisfactory as far as conditions at the limits are concerned, it will be adopted to represent the approximate manner in which the temperature changes with the vertical distance r. Thus the approximate relation will be $d T / d r=A / r^{2}$. The reason that this relation will be satisfied only approximately in the calculations will become clear from the following discussion.

As will be discussed in Section II-B, in this upper region of the atmosphere it will no longer be assumed that the atmosphere rotates with the earth as a solid; and the constant angular velocity Ω in Eq. (11) must be replaced by a variable angular velocity $\omega=\omega(r)$. The apparent gravity relation then becomes

$$
\begin{equation*}
g^{\prime}=g_{a}\left(\frac{a}{r}\right)^{2}-r \omega^{2} \cos ^{2} \theta, \tag{25}
\end{equation*}
$$

where the first term is the absolute gravity force and the second term is the centrifugal force. It will be found convenient to use, instead of g^{\prime}, the apparent gravity potential function ϕ defined by

$$
\begin{equation*}
\frac{d \phi}{d r}=g^{\prime}=g_{a}\left(\frac{a}{r}\right)^{2}-r \omega^{2} \cos ^{2} \theta . \tag{26}
\end{equation*}
$$

It will be shown in Section II-B that the centrifugal force term, which in itself is small, goes to zero as r increases so that $d \phi / d r$ is approximately proportional to $1 / r^{2}$, the approximation becoming more exact with increasing r. Thus $d \phi / d r$ will be very nearly directly proportional to $d T / d r$, that is, to $1 / r^{2}$.

From Eq. (18) we have

$$
\begin{equation*}
\phi=\int g^{\prime} d r+\text { const. } \tag{27}
\end{equation*}
$$

It will be convenient to choose the constant of integration so that $\phi=0$ at the distance r_{0} corresponding to the height of the F_{2} layer. The expression for ϕ then becomes

$$
\begin{equation*}
\phi=g_{a} a^{2}\left(\frac{1}{r_{0}}-\frac{1}{r}\right)-\cos ^{2} \theta \int_{r_{0}}^{r} r[\omega(r)]^{2} d r \tag{28}
\end{equation*}
$$

where $\cos \theta$ is a constant depending upon the latitude θ. It will be seen later on that the integration of the hydrostatic equation becomes especially easy if the temperature distribution, starting from the value T_{0} in the F_{2} layer, is linear in ϕ and therefore of the form

$$
\begin{equation*}
T=T_{0}+\alpha \phi \tag{29}
\end{equation*}
$$

In addition it is seen that, since $d T / d r=a d \phi / d r \approx 1 / r^{2}$, this form for the temperature distribution is a satisfactory representation of the inverse square relation for the temperature. It will therefore be assumed that the temperature distribution is of the form given by (29). The constant α is evaluated from the relation

$$
\begin{equation*}
\alpha=\frac{T_{L}-T_{0}}{\phi_{L}} \tag{30}
\end{equation*}
$$

where ϕ_{L} and T_{L} denote the values at the limit of the atmosphere where it is assumed that $T_{L}=10,000^{\circ} \mathrm{K}$.

II-B. THE DISTRIBUTION OF

ANGULAR VELOCITY

In the treatment of the atmosphere from sea level up to the F_{2} layer it was assumed that the atmosphere rotated with the earth as a solid body with angular velocity Ω. This is the usual assumption in the meteorology of the lower atmosphere, and since there seems to be no evidence to the contrary at higher levels, say up to 100 km , the assumption of constant angular velocity was more or less arbitrarily extended to include the F_{2} layer. However it does not seem acceptable physically to assume the constant angular velocity Ω at all heights, since at the limit of the atmosphere where by hypothesis we have equilibrium with the non-rotating interplanetary gas one should certainly expect the linear velocity and therefore the angular velocity to approach zero. This, of course, does not include the thermal molecular velocities but only the mean motion of the gas as a whole.

Thus it seems reasonable to assume that starting with the value $\omega=\Omega$ at the F_{2} layer, the angular velocity begins to decrease and becomes zero at the limit of the atmosphere. As in the case of the temperature, here again there is little to serve
as a guide to show how ω should vary with r. However, Jeans ${ }^{(45)}$ has found that in the outermost gaseous layers of a star the angular velocity ω must vary as $1 / r^{2}$; and since this also seems acceptable as far as the atmosphere is concerned, it is the law of variation which will be adopted. Above the F_{2} layer it is therefore assumed that $d \omega / d r=C / r^{2}$ which gives

$$
\begin{equation*}
\omega=\Omega-C\left(\frac{1}{r_{0}}-\frac{1}{r}\right) . \tag{31}
\end{equation*}
$$

The constant C is evaluated from the relation

$$
\begin{equation*}
C=\frac{\Omega}{\frac{1}{r_{0}}-\frac{1}{r_{L}}} \tag{32}
\end{equation*}
$$

where r_{L} is the distance from the center of the earth to the limit of the atmosphere. The expression for ω may then be written

$$
\begin{equation*}
\omega=\Omega\left[1-\frac{\frac{1}{r_{0}}-\frac{1}{r}}{\frac{1}{r_{0}}-\frac{1}{r_{L}}}\right] \tag{33}
\end{equation*}
$$

Using this expression for ω, the formula for ϕ, Eq. (28), becomes

$$
\begin{equation*}
\phi=g_{a} a^{2}\left(\frac{1}{r_{0}}-\frac{1}{r}\right)-\cos ^{2} \theta \int_{r_{0}}^{r} r \Omega^{2}\left[1-\frac{\frac{1}{r_{0}}-\frac{1}{r}}{\frac{1}{r_{0}}-\frac{1}{r_{L}}}\right]^{2} d r \tag{34}
\end{equation*}
$$

which, when integrated, results in the expression

$$
\begin{align*}
& \phi=g_{a} \frac{a^{2}}{r_{0}} \frac{1}{\frac{r}{r_{0}}\left(\frac{r}{r_{0}}-1\right)-r_{0}^{2} \Omega^{2} \cos ^{2} \theta\left[\frac{1}{2}\left(\frac{r^{2}}{r_{0}^{2}}-1\right)-\frac{r_{L}}{r_{0}} \frac{\left(\frac{r}{r_{0}}-1\right)^{2}}{\left(\frac{r_{L}}{r_{0}}-1\right)}\right.} \begin{array}{l}
\left.+\frac{1}{2}\left(\frac{r_{L}}{r_{0}}\right)^{2} \frac{\left(\frac{r^{2}}{r_{0}^{2}}-1\right)}{\left(\frac{r_{L}}{r_{0}}-1\right)^{2}}-2\left(\frac{r_{L}}{r_{0}}\right)^{2} \frac{\frac{r}{r_{0}}-1}{\left(\frac{r_{L}}{r_{0}}-1\right)^{2}}+\frac{\left(\frac{r_{L}}{r_{0}}\right)^{2}}{\left(\frac{r_{L}}{r_{0}}-1\right)^{2}} \log \frac{r}{r_{0}}\right] .
\end{array} .
\end{align*}
$$

II-C. THE COMPOSITION

As mentioned before in the discussion of the composition up to the F_{2} layer, the evidence from the aurora and the light of the night sky indicates that the upper atmosphere is composed mainly of nitrogen and oxygen. This is certainly true up to 1200 km since the aurora has been observed to this height. However we are concerned here with heights which, as will be seen later, are much greater than this. Although there is no evidence of the presence of hydrogen or helium, the presence of these gases has not been absolutely disproved. Lindemann (46) is of the opinion that helium may form the major part of the gas in the limit regions of the atmosphere. The argument here is, that since helium is being continually supplied at the surface of the earth and since the total amount in the atmosphere remains constant, it must be continually escaping from the top of the atmosphere and may therefore constitute the major portion of the gas in this limit region. This of course presupposes that somewhere above the F_{2} layer the gases reach a state of diffusion equilibrium in which the constituent gases are distributed in the vertical according to their molecular weights with the lightest gases predominating at the top of the atmosphere. As mentioned previously, Mitra and Rakshit ${ }^{(35)}$ have shown that diffusion equilibrium of neutral gas particles should be practically complete above 350 km if there are no forces in operation which would produce mixing of the gases or prevent their settling out once they are mixed.

However, it seems a possibility that in the outer limit region of the atmosphere practically all of the gas particles may be ionized, and in this case it would be necessary to consider the effect on diffusion of the earth's magnetic field. The effect of the earth's magnetic field on the motion of a charged particle in the upper atmosphere is discussed by Chapman (15), and a study of the effect on diffusion in the F_{2} layer has been made by Ferraro ${ }^{(47)}$ and Cowling ${ }^{(34)}$.

In any event, if neutral hydrogen and helium are present in the outer portions of the ionosphere, it follows as a necessary consequence of the high temperature which has been assumed to exist there that they must be continually escaping into space, since their mean molecular velocities will much exceed the critical escape velocity. According to Jones ${ }^{(48)}$, it would require a temperature as low as $400^{\circ} \mathrm{K}$ at the top of the atmosphere in order that the rate of loss for neutral particles should be small for hydrogen and therefore negligible for the other gases. However, it seems quite possible that the gases in the outer limit region of the atmosphere may be ionized, so that the presence of the earth's magnetic field may be expected to alter considerably the mechanism of the escape process. In particular, the effect of the magnetic field is to cause a spiral motion which, in effect, limits the size of the mean free path and which should therefore make the escape of a particle much more difficult. However, in view of the high temperatures assumed here ($10,000^{\circ} \mathrm{K}$), if the molecular velocity distribution is Maxwellian, it appears likely that there will be some escape of gas, al though perhaps small, regardless of what the gas is. To preserve continuity the mass of escaped gas would have to be made good by equal replenishment at the bottom of the atmosphere. From this point of view one could refer to the outer limits of the ionosphere as the dissipationsphere, since the processes there would be quite analogous to those which occur in the evaporation of a liquid.

Aside from the question of what are the constituent gases in the outer ionosphere, there are also the questions of dissociation and ionization. It has already been pointed out that dissociation of oxygen takes place in the E layer and that there is increasing ionization up to the F_{2} layer. The question of the dissociation of nitrogen, on the other hand, is a very controversial one. Although Chapman and others favor the view, based on auroral observations, that there is no appreciable dissociation of nitrogen, it seems quite possible that at sufficiently great heights the dissociation of nitrogen could take place due to sol ar radiation and that eventually, at sufficient distances, all nitrogen would be in the atomic form. This is supported to some extent perhaps by the work of Wulf and Deming (Ref. 33, p. 291) who point out that the short wave-length radiation available for the nitrogen absorptions, although much less intense than that in the oxygen absorption region, will be absorbed at greater heights where the gas pressure is much lower than for the oxygen absorptions, and where, therefore, the dissociating and ionizing effects on nitrogen may be as important as those produced at lower levels on oxygen by much more intense radiation. These authors state further (Ref. 33, pp. 287 and 295) that at least the positive nitrogen-molecule ion N_{2}^{+}must certainly exist in the high atmosphere and that it seems quite possible that (even) in the F region the nitrogen absorptions may lead to the production of N_{2}^{+}, N^{+}, and N, that is, to some dissociation as well as ionization of nitrogen.

As far as ionization is concerned, it is seen in Fig. 9 that the degree of ionization is increasing in the F_{2} layer even though the ion density goes through a maximum in this layer. The maximum in the ion density is a peculiar circumstance resulting from degree of ionization plus the variation of density with height, and it is not to be inferred that the degree of ionization itself goes through a maximum in the F_{2} layer. On the contrary, all evidence points toward increasing degree of ionization with height; and it will be assumed for model I that complete ionization exists at the limit of the atmosphere so that the atmospheric gas there consists of positive ions and free electrons in equal number.

In fact if the formulas for thermal dissociation (36) and ionization ${ }^{(50)}$ be applied to the limiting region of the atmosphere assumed here, it will be found that at such low pressures and high kinetic temperatures complete dissociation and ionization would be indicated. Thus in order to be consistent with the high kinetic temperature assumed to exist at the limit of our hypothetical atmosphere, it appears necessary to assume also that complete dissociation and ionization exist in this region. It is not intended to imply here that the dissociation and ionization are due to the direct addition of heat, as would be the case for example, in a high-temperature flame, since the initial process responsible for producing the high kinetic temperatures must be something quite different. However, once the high kinetic temperature (high kinetic energy of particles) is attained, regardless of the mechanism responsible, it would seem that the formulas for thermal dissociation and ionization must apply, since they are based upon the impact effects of the mutual collisions of high-speed particles and electrons.

From the remarks which have been made so far concerning the composition, Table 15 has been prepared to show the range of possibilities regarding the state of the atmosphere at its limit. The molecular weight at the limit r_{L} is denoted by M_{L} and free electrons in the gas by e.

Table 15

ATMOSPHERIC MODEL I

Possible Composition States of the Atmosphere at Its Outer Limit

1. $H^{+}+e . M_{L}=\frac{1}{2}$. Diffusion equilibrium with hydrogen present. Hydrogen dissociated and ionized.
2. $\mathrm{H}_{2}^{+}+$e. $M_{L}=1$. The same as case 1 , except hydrogen ionized but not dissociated.
3. $\mathrm{He}^{+}+e . \quad M_{L}=2$. Diffusion equilibrium. Helium present but no hydrogen. Helium ionized.
4. He. $M_{L}=4$. The same as case 3 , except helium not ionized.
5. $\mathrm{N}^{+}+e . \quad M_{L}=7$. Diffusion equilibrium. Hydrogen and helium absent. Nitrogen dissociated and ionized.
6. $20 \% \mathrm{O}^{+}+e+80 \% \mathrm{~N}^{+}+e$. Complete mixing. Same percentage composition as at 83 km , $M_{L}=7.2$. but oxygen and nitrogen dissociated and ionized. Hydrogen and helium can be present if the amounts are small.
7. $0^{+}+e . M_{L}=8$. Diffusion equilibrium. Hydrogen and helium absent. Nitrogen not dissociated but can be ionized. Oxygen dissociated and ionized.
8. $33 \% 0^{+}+e+67 \% \mathrm{~N}_{2}^{+}+e$. Complete mixing. Same percentage composition as in F_{2} $M_{L}=12.02$. layer, but oxygen and nitrogen ionized. Hydrogen and helium can be present if the amounts are small.
9. $N+N . \quad M_{L}=14$. Diffusion equilibrium. Hydrogen and helium absent. Nitrogen dissociated but not ionized. Oxygen can be dissociated and ionized.

It will be readily appreciated that it is not easy to specify just which one of these possibilities is to be chosen as the most likely, although it would seem that some may be more likely than others. The tabulation does show, however, the limits within which the value of M_{L} must lie, and it is to be concluded that M_{L} must certainly lie between $1 / 2$ and 14 . Although this leaves a large range in the possible choice for M_{L}, it will be found that for heights of the order of 500 to 1000 miles , which is probably the limiting height of interest at present in connection with rocket applications, it makes very little difference what value is used for M_{L}, since any of the possible values for M_{L} will give about the same values for the density at these heights. In view of the remarks concerning helium this would seem to be the most tempting possibility to consider for the composition at the outer limit. Owing to the relatively large ionization potential for helium, this might very well remain in the neutral state, and in this case the value $M_{L}=4$ would be appropriate. However in choosing any single value to be used for M_{L}, it would be necessary, in view of the high kinetic temperature, to investigate the escape mechanism to make sure that the composition assumed would not lead to extravagant losses of the earth's atmosphere. Although some loss is required for helium, this is not especially permissible for the other gases, except possibly in the case of hydrogen, for, since the interstellar gas is composed mainly of hydrogen, it would be permissible to have hydrogen escaping from the atmosphere provided an equal amount were returned from the interstellar gas.

If the composition consists of charged particles (positive ions and free electrons), the effects of magnetic and electric fields would play a large role in the escape process. For example it might be supposed that at a temperature as high as $10,000^{\circ} \mathrm{K}$ the free electrons, which have a much higher velocity than the ions, would easily escape from the atmosphere in large numbers. However, it is found that there can be very little separation of positive and negative charges and that positive ions and the associated free electrons must remain together to give a field which is neutral as a whole. It is readily shown that the loss of only relatively few electrons would immediately set up an electrostatic field sufficient to hold all the remaining electrons in the atmosphere.

As discussed by Chapman ${ }^{(15)}$, a free electric charge moving in the presence of a magnetic field will execute a spiral motion around the lines of magnetic force' so that a balance is established between the centrifugal force and the deflecting force due to the magnetic field. For a kinetic temperature which would give a transverse component of velocity of $10^{7} \mathrm{~cm} / \mathrm{sec}$ for an electron or $10^{7} / 200=5 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$ for an ion (based on $M=20$ for ions), the radius of the spiral in the F_{2} layer at the equator is found to be 2 cm for electrons and 400 cm for ions. Thus, in the F_{2} layer, when the mean free path is greater than 4 meters, the paths of the charged particles would be determined in large part by the spiral motion; and it would appear that this effect would reduce considerably the probability of escape of a particle as far as heights of the order of that of the F_{2} layer are concerned. It is seen that the magnetic field has the effect, essentially, of limiting the size of the mean free path. It can be shown, incidentally (Ref. 57, p. 95), that a Maxwellian velocity distribution is unaffected by the presence of a magnetic field. However, the limiting effect of the magnetic field on the mean free path decreases fairly rapidly with distance from the center of the earth at a rate approximately as the inverse cube of the distance, Hewson ${ }^{(51)}$, and at distances of the order of 5000 to 10,000 miles the mapnetic effects would be considerably reduced.

Rather than attempt to deduce the variation of $M=M(r)$ as a function of r on some basis of diffusion equilibrium, etc., it is considered sufficient here simply to assume a reasonable function for $M(r)$. Here again a variation with $d M / d r$ proportional to $1 / r^{2}$ is considered satisfactory; and, as in the case of the temperature, this is closely approximated by the linear relation,

$$
\begin{equation*}
M=M_{0}-\beta \phi, \tag{36}
\end{equation*}
$$

where M_{0} is the molecular weight at the F_{2} layer, and β is given by

$$
\begin{equation*}
\beta=\frac{M_{0}-M_{L}}{\phi_{L}} \tag{37}
\end{equation*}
$$

The relation (36) is supposed to represent adequately the effects of whatever degree of diffusion equilibrium is present. Thus M first decreases rapidly above the F_{2} layer and then decreases very slowly at great distances near the outer limit, which agrees qualitatively at least with the concept of diffusion equilibrium.

It will be assumed that the composition of the interstellar gas is that given by Langer ${ }^{(52)}$, Table 16.

Table 16

ASSUMED COMPOSITION OF THE INTERSTELLAR GAS IN THE VICINITY OF THE PLANET EARTH

Ionic Species	e	H^{+}	H	Na
No. per cm^{3}	1	1	10^{-2}	2×10^{-9}
Density, $\mathrm{gram} / \mathrm{cm}^{3}$	10^{-27}	1.7×10^{-24}	1.6×10^{-26}	10^{-31}
Ionic Species	Na^{+}	Ca	Ca^{+}	$\mathrm{Ca}++$
No. per cm^{3}	3×10^{-5}	2×10^{-14}	10^{-9}	3×10^{-7}
Density, ${\mathrm{gram} / \mathrm{cm}^{3}}$	10^{-27}	1.3×10^{-35}	6×10^{-32}	2×10^{-29}

It is usually considered, (Ref. 39), that about half the mass of the interstellar gas is due to dust particles. These have been omitted in the tabulation above, since at the earth's distance from the sun the solar radiation pressure would probably be sufficient to "blow" the dust particles out of the solar system. The radiation pressure on ionized gas particles is considerably less, and it is assumed that they would remain in the solar system.

It is at once evident from Table 16 that the main constituents of the interstellar gas are the positive hydrogen atom ion and the free electron, and, as far as the density and molecular weight of this gas is concerned, all of the other constituents may be neglected. It should be pointed out here that the equilibrium condition as-
sumed between the atmospheric and interstellar gases does not necessarily imply equality of composition. It is seen however that if the atmospheric composition at the outer limit is taken to be $\mathrm{H}^{+}+e$, then the two gases are of practically the same composition (the other constituents of the interstellar gas being negligible in comparison to the proportion of $\mathrm{H}^{+}+e$ present), and in this case equilibrium would also be accompanied by equality of composition.

II-D. THE LIMIT OF THE ATMOSPHERE

A limit for the height of a planetary atmosphere may be defined in a number of different ways, each according to the concept used, and each leading to a different result. In fact, if one can imagine an isothermal atmosphere on a non-rotating planet for which there is no variation of gravity with distance, it is found, Jeans ${ }^{(53)}$, mathematically at least, that the atmosphere would extend to infinity. If, on the other hand, an atmosphere be maintained with an adiabatic temperature distribution, it is found ${ }^{(53)}$ that the gas must have a definite upper limit. If an isothermal atmosphere rotates as a solid with a rotating planet in which gravity obeys the inverse square law, it is found, Bjerknes ${ }^{(54)}$, Jeans ${ }^{(53)}$, that there is a limiting distance where the gravity and centrifugal forces exactly balance producing a minimum in the density distribution. For the equatorial plane this distance is found to be $r=6.607 a$ or $h=r-a=21,826$ miles above sea level, and this value might be regarded as an indication of the order of magnitude of the limiting height of the atmosphere. In this type of analysis no account is taken of the ultimate molecular structure of the gas, nor is it necessary to specify the isothermal temperature of the gas.

As conceived by Bryan ${ }^{(55)}$, Milne ${ }^{(56)}$, and Jeans ${ }^{(53)}$, at sufficiently great heights where the mean free path becomes very large and the collision frequency very small, the gas particles, in the time interval between collisions, will begin to behave as free bodies in a gravitational field and will therefore begin to move in elliptic, parabolic, and hyperbolic orbits depending upon the velocity possessed by the particle. In this region of the atmosphere the particles will move outward over large distances and fall back again into the denser atmosphere under the influence of gravity. Those which are moving fast enough will establish parabolic or hyperbolic orbits; and, if there are no further collisions, will escape from the earth entirely, since they will have attained the escape velocity. ${ }^{+}$

This type of atmospheric configuration has been considered in detail by Milne ${ }^{(56)}$, who considers the limit of the atmosphere, which he calls the "surface region", to be situated at the height where the particles begin to move approximately in free flight as described above. In his analysis, which was made before the high ionosphere temperatures were known, Milne assumed a temperature distribution which started with the value $219^{\circ} \mathrm{K}$ in the stratosphere and decreased continually with height at a rate proportional to $1 / r^{2 / 3}$ where r is the distance from the center of the earth. For molecular hydrogen he finds the height of the "limit" of the atmosphere to be 1400 km

[^7]and for helium, 630 km . In view of the high temperatures now known to exist in the ionosphere, it would be interesting to apply Milne's analysis anew, assuming a temperature distribution above the F_{2} layer comparable with the results derived here.

The concept of a limit of the atmosphere may be considered in still another way. From this point of view one may gain an approximate indication of the greatest value which the height of the limit of the atmosphere might have by assuming, for example, a constant speed gas at temperature T_{L} at its limit, and considering the critical distance r_{L} at which the escape velocity will exist. The escape velocity v_{L} at this distance is specified by the condition that the kinetic energy of the particle be equal to the work done against gravity in transporting the particle from the position r_{L} to infinity. This condition is imposed through the relation

$$
\begin{equation*}
\frac{1}{2} m v_{L}^{2}=\frac{3}{2} k T_{L}=m \int_{r_{L}}^{\infty} g_{a}\left(\frac{a}{r}\right)^{2} d r=\frac{g_{a} a^{2} m}{r_{L}}, \tag{38}
\end{equation*}
$$

which gives

$$
\begin{equation*}
r_{L}=\frac{2^{g_{a} a^{2} m}}{3 k T_{L}} \equiv \frac{2 g_{a} a^{2} M}{3 R_{u} T_{L}} \tag{39}
\end{equation*}
$$

Introducing the values of the constants gives

$$
\begin{equation*}
r_{L}=1.973 \times 10^{5} \frac{M}{T} \text { miles } \tag{40}
\end{equation*}
$$

where T is in ${ }^{\circ}$. This is tabulated in Table 17 for different values of M with $T=$ $10,000^{\circ} \mathrm{K}$.

Table 17
MAXIMUM POSSIBLE HEIGHT OF LIMIT OF ATMOSPHERE based on escape velocity for a constant speed gas

Gas	M	T K	r_{L} miles	$h_{L}^{*}=r_{L}-a$ mi les
\mathbf{H}	1	10,000	1973	-1990
H_{2}	2	10,000	3947	-17
He	4	10,000	7893	3930
N	14	10,000	27,627	23,663
$\mathbf{0}$	16	10,000	31,573	27,610
\mathbf{N}_{2}	28	10,000	55,253	51,290
\mathbf{O}_{2}	32	10,000	63,146	59,183

${ }^{*} h_{L}=$ height above sea level.

The calculations, through Eq. (38), are based essentially on the assumption that the gas particles do not undergo any collisions so that all of the kinetic energy is available to overcome gravity. On this basis it is seen that H and H_{2} could not remain within the earth's gravitational field even at sea level, although the other gases can remain to relatively great heights. For a Maxwellian gas these heights would be somewhat lower, since there would always be a certain percentage of the particles with velocities greater than the mean velocity.

Consider again the concept of the atmosphere in which an "outer" region is reached where the mean free path becomes so large that the gas particles, between collisions, move over dynamical orbits under the influence of the earth's gravitational field. In the denser region at the lower boundary of this region the gas particles will have a Maxwellian velocity distribution. It can be shown, Kennard (see pp. 74-78, 90, of Ref. 57), that when the particles move upward in a force field for which a scalar potential exists, such as the field of apparent gravity, the Maxwellian distribution is automatically preserved at all levels above the lower boundary provided the temperature is the same at all levels in this outer region[3c]. Thus if the dynamical orbit region is isothermal, the velocities there will be Maxwellian; and therefore the density distribution will be given by the Boltzmann law,

$$
\begin{equation*}
\rho=\rho_{*} e^{\frac{-m_{*}}{k T_{*}}\left(\phi-\phi_{*}\right)}, \tag{41}
\end{equation*}
$$

for an isothermal Maxwellian gas in a potential force field, where ϕ is the apparent gravity potential, see Eq. (28), and the star subscript denotes conditions at the lower boundary of the dynamic orbit region where $r=r_{*}, h=h_{*}$. Since the hydrostatic equation in terms of the potential function is $d p=-\rho d \phi$, where $\rho=m n$ and $p=n k T$, the use of this equation gives the same result as (41). Therefore even in the case where there is a dynamic orbit region, the hydrostatic equation may still be applied provided the atmosphere in this region is in thermal equilibrium, i.e., isothermal temperature distribution. This would not be especially evident a priori. When the interval of height is small enough that the variation of gravity may be neglected, the density distribution may be written

$$
\begin{equation*}
\rho=\rho_{*} e^{\frac{-m_{*} g_{*}^{\prime}}{k T_{*}}\left(r-r_{*}\right)} \equiv \rho_{*} e^{\frac{-M_{*} g_{*}^{\prime}}{R_{u} T_{*}}\left(r-r_{*}\right)}, \tag{42}
\end{equation*}
$$

where, in terms of height above sea level, $r-r_{*}$ may be replaced by $h-h_{*}$. It will be observed that since this equation is based on constant temperature, increases in energy resulting from radiation absorption are not allowed; and since the composition (M_{*}) must be treated as constant, dissociation and ionization are also not allowed.

[^8]Since the motion of the particles in the dynamical orbit region is conservative if the temperature distribution is isothermal, the total energy of each particle (kinetic plus potential) must remain constant as expressed by

$$
\begin{equation*}
\frac{1}{2} m_{*}\left(v^{2}-v_{*}^{2}\right)+m_{*}\left(\phi-\phi_{*}\right)=0 . \tag{43}
\end{equation*}
$$

Introducing the kinetic temperature from Eq. (5a) and neglecting variations in gravity, this may be written

$$
\begin{equation*}
k\left(T-T_{*}\right)+m_{*} g_{*}^{\prime}\left(h-h_{*}\right)=0, \tag{44}
\end{equation*}
$$

which shows how the temperature of each individual particle must vary over the dynamical orbit. However, owing to the existence of the Maxwellian distribution, the mean temperature at any level, considering the integrated effect of all the particles at that level, will be such that the vertical temperature distribution is isothermal throughout the dynamic orbit region.

Realizing that a limit of the atmosphere may be defined in several different ways, we proceed first with the analysis based on the atmospheric model I, which is defined or specified by the assumed condition that it be in equilibrium at its outer limit with the interstellar gas. Thus this condition of equilibrium automatically defines the outer limit of the atmosphere. Although this atmosphere will not be isothermal in the dynamic orbit regions, it will be assumed nevertheless that the hydrostatic equation may be used to calculate the pressure. Before proceeding to the calculations it is necessary to obtain the values ϕ_{L} and the corresponding limiting distances r_{L} of the top of the atmosphere. These values are needed in order to determine the values of the constants α [Eq. (30)], C [Eq. (32)], and β [Eq. (37)]. Using the potential function ϕ, the hydrostatic equation becomes simply

$$
\begin{equation*}
d p=-\rho d \phi \tag{45}
\end{equation*}
$$

which, when combined with the equation of state, gives

$$
\begin{equation*}
\frac{d p}{p}=-\frac{1}{R_{u}} \frac{M}{T} d \phi \tag{46}
\end{equation*}
$$

Introducing the expressions (29) and (36) for T and M, this becomes

$$
\begin{equation*}
\frac{d p}{p}=-\frac{1}{R_{u}} \frac{M_{\mathrm{O}}-\beta \phi}{T_{\circ}+\alpha \phi} d \phi \tag{47}
\end{equation*}
$$

which is easily integrated giving

$$
\begin{equation*}
\frac{p}{p_{0}}=\frac{e^{\frac{\beta}{R_{u} \alpha} \phi}}{\left[1+\frac{\alpha}{T_{0}} \phi\right]^{\frac{M_{0} \alpha+\beta T_{0}}{R_{u} \alpha^{2}}}} \tag{48}
\end{equation*}
$$

the subscript zero referring to the F_{2} layer where ϕ is zero.
Replacing α and β from Eqs. (30) and (37), the pressure ratio may be written

$$
\begin{equation*}
\frac{p}{p_{0}}=\frac{\exp \left[\frac{1}{R_{u}} \frac{M_{0}}{T_{0}} \frac{\left(1-M_{L} / M_{0}\right)}{\left(T_{L} / T_{\circ}-1\right)} \phi\right]}{\left[1+\left(\frac{T_{L}}{T_{0}}-1\right) \frac{\phi}{\phi_{L}}\right]^{\frac{1}{R_{u}} \frac{M_{0}}{T_{0}} \frac{\left(T_{L} / T_{0}-M_{L} / M_{0}\right)}{\left(T_{L} / T_{\mathrm{O}}-1\right)^{2}} \phi_{L}}} \tag{49}
\end{equation*}
$$

At the limit of the atmosphere where $p=p_{L}, \phi=\phi_{L}$, this becomes

$$
\begin{equation*}
\frac{p_{L}}{p_{0}}=\frac{\exp \left[\frac{1}{R_{u}} \frac{M_{0}}{T_{0}} \frac{\left(1-M_{L} / M_{0}\right)}{\left(T_{L} / T_{\circ}-1\right)} \phi_{L}\right]}{\frac{1}{R_{u}} \frac{M_{0}}{T_{0}} \frac{\left(T_{L} / T_{0}-M_{L} / M_{0}\right)}{\left(T_{L} / T_{\circ}-1\right)^{2}} \phi_{L}} \tag{50}
\end{equation*}
$$

Having values for $M_{0}, T_{0}, M_{L}, T_{L}$, and p_{L}, the corresponding value of ϕ_{L} may then be determined from Eq. (50).

Now, introducing the limit conditions, $\phi=\phi_{L}$ when $r=r_{L}$, in Eq. (35) we have

$$
\begin{align*}
\phi_{L} & =g_{a} \frac{a^{2}}{r_{0}} \frac{1}{r_{L}}\left(\frac{r_{L}}{r_{0}}-1\right)-\frac{2}{r_{0}}\left[\frac{1}{2}\left(\frac{r_{L}^{2}}{r_{0}^{2}}-1\right)-\frac{r_{L}}{r_{0}}\left(\frac{r_{L}}{r_{0}}-1\right)\right. \\
& \left.+\frac{1}{2}\left(\frac{r_{L}}{r_{0}}\right)^{2} \frac{\left(\frac{r_{L}}{r_{0}}+1\right)}{\left(\frac{r_{L}}{r_{0}}-1\right)}-2 \frac{\left(\frac{r_{L}}{r_{0}}\right)^{2}}{\left(\frac{r_{L}}{r_{0}}-1\right)}+\frac{\frac{r_{L}}{r_{0}}}{\left(\frac{r_{L}}{r_{0}}-1\right)^{2}} \log \frac{r_{L}}{r_{0}}\right] \tag{51}
\end{align*}
$$

Then by using the value of ϕ_{L} found from Eq. (50) the corresponding value of r_{L} is evaluated from Eq. (51).

To evaluate ϕ_{L} from the relation (50) the value of p_{L} must be known. By analogy with the condition for equilibrium of two fluids in contact it will be assumed that at the distance r_{L} the pressure is the same in the atmospheric gas as in the interstellar gas. It is possible of course to impose an equilibrium condition which would require continuity of density with the interstellar gas, but this in general would not allow continuity of pressure. For, since it has been assumed that thermal equilibrium must exist, it follows from the equation of state $p=\rho T R_{u} / M$ that continuity of pressure and density can exist simultaneously only when the composition M is the same for both gases. In the cases treated here it will be assumed that the condition of continuity in pressure must be satisfied regardless of the density.

Since the composition of the interstellar gas is mainly $\mathrm{H}^{+}+e$, the density for one hydrogen atom per cm^{3} is $1.67 \times 10^{-24} \mathrm{gram} / \mathrm{cm}^{3}$, the molecular weight is $1 / 2$, and if the value $T=18,000^{\circ} \mathrm{R}\left(10,000^{\circ} \mathrm{K}\right)$ is used in the equation of state ${ }^{[4]}$, it will be found that $p_{L}=5.78 \times 10^{-15} \mathrm{lb} / \mathrm{ft}^{2}$. This is the value which will be used for the pressure at the limit of the atmosphere. For the equatorial atmosphere we had $h_{0}=$ $400 \mathrm{kri}, M_{o}=24.0, p_{0}=2.08 \because 10^{-7} \mathrm{millibars}$, and $T_{o}=1800^{\circ} \mathrm{K}$. Using these values plus the value for p_{L} derived above, the values of ϕ_{L} and r_{L} for various values of M_{L} are found as shown in Table 18. In determining the values of ϕ_{L} it is convenient to use the plot shown in Fig. 18 (p. 68), which represents solutions of Eq. (50). This is also convenient to use if it is desired to investigate other values for p_{L}. The values

[^9]in Table 18 show that the lowest value of h_{L} to be expected is 6600 miles and that the greatest value is about 2.5 times this large. Similar results may be obtained for the atmosphere in middle latitudes.

Table 18

ATMOSPHERIC MODEL I. LIMIT OF THE ATMOSPHERE AT LATITUDE 0°, BASED on Continuity of pressure with the interstellar gas

Values of ϕ_{L} and r_{L} for the equatorial atmosphere ${ }^{(1)}$.

Cas	M_{L}	$\phi_{L}, \mathrm{ft}-\mathrm{lb}$	r_{L}, miles	$h_{L}=r_{L}-a$, miles
$\mathrm{H}+\mathrm{e}$	1/2	5.018×10^{8}	20,490	16,530
$\mathrm{H}_{2}^{+}+$e or H	1	4.960×10^{8}	19,580	15,620
$\mathrm{He}^{+}+$	2	4.851×10^{8}	18,110	14,150
He	4	4.640×10^{8}	15,880	11,920
$\mathrm{N}^{+}+\mathrm{e}$	7	4.351×10^{8}	13,520	9,560
$0^{+}+$	8	4.249×10^{8}	12,820	8,860
$33 \% 0^{+}+e+67 \% \mathrm{~N}_{2}^{+}+e$	12	3.950×10^{8}	11,210	7.250
$\mathrm{N}+\mathrm{N}$	14	3.808×10^{8}	10,590	6,630

${ }^{(1)}$ Mased on $p_{L}=5.78 \times 10^{-15} \mathrm{lb} / \mathrm{ft}^{2} . h_{L}=$ height of limit of atmosphere.

If the condition for continuity of density had been specified at the distance r_{L} rather than continuity of pressure, the values of h_{L} contained in Table 19 would be obtained.

Table 19

ATMOSPHERIC MODEL I. LIMIT OF THE ATMOSPHERE AT LATITUDE 0°, BASED ON CONTINUITY OF DENSITY WITH INTERSTELLAR GAS ${ }^{(1)}$.

Gas	M_{L}	$\phi_{L}, \mathrm{ft}-\mathrm{lb}$	r_{L}, miles	$h_{L}=r_{L}-a, \mathrm{miles}$
H^{+e}	$1 / 2$	5.018×10^{8}	20,490	16,530
$\mathrm{H}_{2}^{+} \mathrm{H}^{+}$or H	1	5.149×10^{8}	23,810	19,850
$\mathrm{He}_{e}+e$	2	5.212×10^{8}	24,060	20,100
H_{e}	4	5.169×10^{8}	23,200	19,240
$\mathrm{H}^{+}+e$	7	4.985×10^{8}	19,970	16,010
$\mathrm{O}^{+}+e$	8	4.926×10^{8}	19,090	15,130
$33 \% 0^{+}+e+67 \% \mathrm{~N}_{2}^{+}+e$	12	4.644×10^{8}	15,910	11,950
$\mathrm{~N}+\mathrm{N}$	14	4.509×10^{8}	14,710	10,750

${ }^{(1)}$ Based on $\rho_{L}=3.24 \times 10^{-24} \frac{\mathrm{slug}}{\mathrm{ft}^{3}}=1.67 \times 10^{-24} \frac{\mathrm{gram}}{\mathrm{cm}^{3}}$

SOLUTIONS OF EQUATION (50) CORRESPONDING TO CONDITIONS AT LATITUDE 0° :
FIG. 18

II-E. THE CALCULATIONS FOR
 ATMOSPHERIC MODEL I

Having obtained the values of ϕ_{L} and r_{L}, the calculations for the temperature, pressure, and density may now be carried out. The pressure is computed from Eq. (49) using values of ϕ computed from Eq. (35) for various assumed values of r. Knowing ϕ_{L} the values of a and β are determined, and the temperature and molecular weight are calculated from Eqs. (29) and (36). The density is computed from the equation of state (16) using the calculated values of T, M, and p.

The final results depend, of course, upon the value used for M_{L}, that is, upon the composition assumed for the atmosphere at its outer limit. It was seen from Table 15 that the appropriate value of M_{L} must certainly lie between $1 / 2$ and 14 . In view of the difficulty of specifying any single, most representative value for M_{L}, the calculations are carried out for $M_{L}=1 / 2,7$, and 14 , which appear to cover the entire range of possibility. The results of the calculations for the equatorial atmosphere are tabulated in Tables 20 to 22 in engineering units, and in Tables 23 to 25 in the metric system.

Comparing the density values in Tables 20,21 , and 22, for example, it is somewhat surprising perhaps to find that the vertical distribution of density is of the same order of magnitude, clear up to the limit h_{L}, regardless of the value of M_{L}. In view of this result it is considered quite adequate to use the results for the average value $M_{L}=7$, Tables 21 and 24, as representative of the conditions in this region of the atmosphere; and these results may be considered as the adopted values for the atmospheric model I. These adopted values based on $M_{L}=7$ are plotted in Figs. 19 and 20 up to a height of 1000 miles (1609 km), and the corresponding variation of the density ratio σ is shown in Figs. 21 and 22. In view of the results found above concerning the small effect of M_{L}, the atmospheric values at latitude 45° were computed for the single case $M_{L}=7$. These results are given in Tables 26 and 27. The temperature distribution up to a height of 1000 miles is plotted in Figs. 23 and 24 while the corresponding variation of the density ratio σ is shown in Figs. 25 and 26.

It is seen from Eqs. (19) and (23) that the estimate of the mean free path L and collision frequency ν is rather strongly affected by the value used for the diameter d. According to Chapman ${ }^{(15)}$, when a gas contains free electrons and gas particles, d is usually interpreted as the weighted mean (weighted according to the relative number of electrons and gas particles) of the electron and gas particle diameters. Since the electron diameter is negligibly small as far as physical size is concerned, when electrons and gas particles are present in equal numbers (complete ionization) the mean value used for d is about half that of the gas particle diameter. On this basis the value $d=1 \times 10^{-8} \mathrm{~cm}$ would be associated with completely ionized atoms and $d=$ $1.5 \times 10^{-8} \mathrm{~cm}$ with completely ionized molecules, corresponding to the value $d=2 \times$ $10^{-8} \mathrm{~cm}$ for neutral atoms and $d=3 \times 10^{-8} \mathrm{~cm}$ for neutral molecules. It should be mentioned that the effective gas particle diameter is somewhat temperature dependent (58), (89) in such a way that at high temperatures (high particle velocities) the effective diameter decreases. On the other hand when a gas is highly ionized, the effect of the electrostatic fields of the particles is to give a considerably greater effective collision cross section. "However, except at extreme heights, the degree of ionization in atmospheric model I remains quite small and most of this atmosphere can probably be represented with sufficient accuracy by a value of d lying within the limits $2 \times 10^{-8} \mathrm{~cm} \leqq d \leqq 3 \times 10^{-8} \mathrm{~cm}$.
atmospheric model I - values of temperature, pressure, and density above the fa layer, based on m $=0.5$
Latitude, 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{\mathrm{s}}$

Height		Potential$\begin{array}{r} \oplus \\ \mathrm{ft}-\mathrm{lb} \\ \hline \end{array}$	Apparent Gravity $\stackrel{g}{\mathrm{ft} / \mathrm{sec}^{\mathrm{a}}}$	Mean Mol Wt M	$\begin{array}{\|c\|} \hline \text { Temp } \\ T \\ { }^{\circ} \mathrm{F} \\ \hline \end{array}$	Scale Height: H ft	$\begin{gathered} \text { Pressure } \\ p \\ \mathrm{lb} / \mathrm{ft}^{*} \end{gathered}$	Pressure Ratio p / p_{q}	Density slug/ ft^{3}	Density Ratio ρ / ρ_{0}	NunberDensitynparticles $/ \mathrm{ft}^{3}$	$\left\lvert\, \begin{gathered} \text { Hean Parti- } \\ \text { cle Speed } \\ v \\ \mathrm{ft} / \mathrm{sec} \end{gathered}\right.$	$d=3 \times 10^{-8} \mathrm{am}$		$d=2 \times 10^{-8} \mathrm{~cm}$	
		$\begin{gathered} \text { Mean Free } \\ \text { Path } \\ L \\ \mathrm{ft} \end{gathered}$											Mean Colli. sion Freq v 1/sec	$\begin{gathered} \text { Mean Free } \\ \text { Path } \\ L \\ \mathrm{ft} \end{gathered}$	Mean Colli- sion Freq ν $1 / \mathrm{sec}$	
mi	ft															
	1.312×10^{6}						.	2.05×10^{-10}	$6.45 \times$	2.82×10^{-11}	2.38×10^{12}					
300	$1.584 \times$	7.612×10	27.725	23.64	3,454	2.625×10^{8}	$1.46 \times$	6.90	$2.00 \times 10^{-}$	8.75×1	7.49×10^{28}	4.30×10^{4}	10×10^{4}	$1.39 \times$. $98 \times 10^{*}$	
350	1.848×10^{6}	1.484×10^{7}	27.087	. 30	3,677	2.894 $\times 10^{8}$	5.60×10^{-8}	2.65×10^{-11}	7.14×10^{-25}	3.12×10^{-12}	2.71×10^{18}	4.47×10^{3}	8.58×10^{4}	3.21×10^{-2}	1.93×10^{8}	32×10^{-8}
400	2.112×10^{6}	$2.191 \times 10^{\prime}$	6.498	2.97	3.	3, 171×10^{8}	2.34×10^{-3}	1.11×10^{-1}	2.79×10^{-18}	1.22×10^{-1}	1.07×10^{18}	4.62×10^{8}	2.17×10^{8}	2.13×10^{-2}	4.89×10^{4}	10^{-3}
450	2.376×10^{6}	2.881×10^{7}	872	22.65	4,9	3.465 $\times 10^{8}$	1.06×10^{-8}	$5.01 \times$	$1.18 \times$	$5.16 \times$	4.61×10^{13}	4.78×10^{3}	$5.04 \times 10^{\circ}$	9.48×10^{-3}	1.13×10^{6}	4.21×10^{-3}
00	$2.640 \times$	3.556×10^{7}	25,295	22.33	4,286	3.769×10^{8}	5.09 $\times 10^{-8}$	2.41×10^{-1}	5.34 $\times 10^{-1}$	2.34×10^{-1}	2.12×10^{11}	4.93×10^{3}	1.10×10^{8}	4.50×10^{-3}	2.47×10^{8}	00×10^{-3}
600	3.168×10^{0}	4. 866×10^{7}	24.197			4. 4114×10^{8}	. 40×10^{-8}	6.62×10^{-1}	1.31×10^{-1}	5.73×10^{-1}	5.34×10^{10}	5.21×10^{4}	4.35×10^{6}	1.20×10^{-2}	$9.79 \times 10^{\circ}$	5.32×10^{-6}
	3.6\%	6.111×10^{r}	23.170			5.110×10^{8}	4.60×10^{-20}	2.17×10^{-1}	3.88×10^{-17}	1.70	1.62×10^{10}	5.49×10^{3}	1.44×10^{7}	3.8	3.23×10^{7}	10-4
800	4.224×10^{6}	$\underline{2.308 \times 10^{4}}$	22,206	58	3,	5.859 $\times 10^{8}$	1.75×10^{-10}	8.27×10^{-14}	1.35×10^{-17}	5.91×10^{-10}	5.80×10^{8}	5.76×10^{3}	4.01×10^{7}	1.44×10^{-8}	9.02×10^{7}	6.39×10^{-8}
900	4.752×10^{60}	8.456×10^{7}	. 301	20.04	5,727	6.665×10^{6}	. 53×10^{-1}	3.56×10^{-14}	5.30×10^{-18}	2.32×10^{-1}	2.34×10^{0}	6.01×10^{2}	9.93×10^{7}	6.05×10^{-8}	2.24×10^{8}	2.69×10^{-8}
1,000	5.280×10^{4}	9.557×10^{7}	20,451	19.52	6,05	7.530×10^{8}	3. $58 \times$	$1.69 \times$	2.32×10^{-18}	$1.01 \times 10^{-}$	1.05×10^{8}	$6.26 \times 10^{\text {s }}$	2.21×10^{8}	2.83×10^{-6}	4.98×10^{8}	1.26×10^{-8}
1,200	6.336×10^{6}	1. 1.63×10^{4}	897	18.	6,601	9.440 $\times 10^{\circ}$	$1.02 \times$	$4.82 \times$	5. $73 \times$	2.51×10^{-1}	2.73×10^{40}	6.74×10^{3}	8.52×10^{8}	1.92×10^{-8}	1.92×10^{9}	3.52×10^{-8}
1,400	. 392	$1.355 \times$	17.512	17.65		1.161×10^{6}	$3.73 \times$	$1.76 \times$	$1.83 \times$	$8.01 \times 10^{-}$	9.17×10^{7}	7.20×10^{8}	2.54×10^{2}	2.84×10^{-6}	5.70×10^{2}	1.26×10^{-8}
1,500	7.920	1.446×10^{6}	16.876	17.23	7.	1.280	$2.42 \times$	$1.14 \times$	1.12×10^{-1}	4.90	5.75×10^{1}	7.42×10^{2}	4.04×10^{9}	$1.84 \times 10^{-}$	$9.10 \times 10^{\circ}$	8.16×10^{-7}
1,750	9.240	$1.659 \times$	15.430	16.23	8,120	1.611×10^{8}	9.64×	4.56×10^{-1}	3.88×10^{-80}	. $20 \times$	2.12×10^{7}	7.96×10^{7}	1.10×10^{10}	7.26	2.47×10^{2}	3.23×10^{-7}
2,000	1.056×10^{7}	1.854×10^{8}	14.162	15. 32	8,694	1.991×10^{8}	4.61×10^{-18}	2.18×10^{-10}	1.64×10^{-20}	7.17×10^{-18}	9.47×10^{6}	8.47×10^{8}	2.45×10^{10}	3.45×10^{-7}	5.52×10^{20}	1.53×10^{-7}
2,500	1.320×10^{7}	$2.199 \times 10^{*}$	12.709	13.70	9,709	2.770×10^{6}	1.54×10^{-12}	7.28×10^{-28}	4.37×10^{-42}	1.91×10^{-18}	2.82×10^{80}	9.47×10^{8}	8.24×10^{10}	1.15×10^{-1}	1.85×10^{11}	5.11×10^{-8}
3,000	1.584×10^{2}	2.494×10^{8}	. 385	12.32	10,577	4.107×10^{5}	7.18×10^{-18}	3.39×10^{-17}	1.68×10^{-4}	$7.35 \times 10^{-}$	1.21×10^{8}	1.04×10^{4}	1.92×10^{11}	5.41×10^{-8}	4.32×10^{11}	2.41×10^{-8}
4,000	2.112	$2.973 \times 10^{\text {E }}$	7.940	10.08	11,9	7.440×10^{6}	2.75×10^{-14}	$1.30 \times$	4.65×10^{-2}	$2.03 \times 10^{-}$	4.08×10^{5}	1.23×10^{4}	5.70×10^{11}	2.16×10^{-8}	1.28×10^{18}	9.59×10^{-8}
5,000	2.640×10^{7}	3.346×10^{8}		,	13,083	1.245×10^{7}	1.58×10^{-1}	$7.47 \times$	2.03×10^{-98}	8.88×10^{-8}	2.16×10^{6}	1.41×10^{4}	1.06×10^{18}	1.31×10^{-8}	2.42×10^{18}	5.82×10^{-8}
6,060	3. 168×10^{7}	$3.644 \times 10^{\text {a }}$	5.073	6.93		1.973	$13 \times$	5.34×10^{-15}	1.13×10^{-2}	4.94×10^{-2}	1.44×10^{8}	$1.60 \times 10^{*}$	1.61×10^{12}	$9.91 \times 10^{-}$	$3.63 \times$	4.41×10^{-8}
7,000	. 696	3.887×10^{8}	190	5.79		3.005×10^{7}	$9.07 \times$	$4.29 \times$	7.20×10^{-23}	3.15×10^{-2}	1.10×10^{8}	1.79×10^{4}	2.11×10^{12}	8.47×10^{-6}	4.75×10^{18}	3.76×10^{-9}
	4.224	4.090×10^{8}	3.520			4.453	7.84	3.71	5.00×10^{-33}	2.19×10^{-20}	9.14×10^{4}	$2.00 \times 10^{*}$	2.54×10^{12}	7.86×10^{-1}	5.72×10^{1}	3.50×10^{-8}
9,000	4.752×10^{7}	$4.262 \times 10^{*}$	2.999	4,04	15,771	6.969×10^{7}	7.10×10^{-1}	3.36×10^{-18}	3.66×10^{-23}	1.60×10^{-9}	8.02×10^{4}	2.22×10^{4}	2.89×10^{12}	7.68×10^{-8}	6.51×10^{12}	$\frac{3.41 \times 10^{-8}}{3.59}$
10,000	5. 280×10^{7}	4.409×10^{8}	2.586	3.35		9.295×10^{7}	6.63×10^{-18}	3.13×10^{-18}	2.76×10^{-89}	1.21×10^{-20}	8.29×10^{4}	$2.47 \times 10^{+}$	3.19×10^{12}	7.75×10^{-8}	7.17×10^{29}	3.44×10^{-9}
11,000	5.808×10^{7}	$4.536 \times 10^{*}$	252	2.76	16,583	1.325×10^{8}	6.32×10^{-18}	2.99×10^{-18}	2.12×10^{-2}	9.27×10^{-8}	6.80×10^{4}	2.76×10^{4}	3.42×10^{12}	8.07×10^{-8}	7.69×10^{18}	3.59×10^{-9}
12,000	6.336×10^{7}	4.648×10^{8}	1.980	2.23	16,913	1.903×10^{8}	6.11×10^{-18}	2.89×10^{-1}	1.62×10^{-8}	7.09×10^{-2}	6.43×10^{4}	3.10×10^{4}	3.62×10^{19}	8.57×10^{-8}	6. 13×10	3.81 $\times 10^{-8}$
13,000	6.846×10^{7}	4.746×10^{8}	1.754	1.77	17,201	2.752×10^{81}	5.97×10^{-18}	2.82×10^{-1}	$1.24 \times 10^{-}$	5.42×10^{-2}	6.20×10^{4}	3.51×10^{4}	3.75×10^{1}	9.36×10^{-1}	8.44×10	4.16×10^{-1}
14,000	7.3	$4.834 \times 10^{*}$	1.565	1.36	17,46	4.076×10^{8}	5.88×10^{-3}	2.78×10^{-1}	9.22×10^{-8}	4.03×10^{-3}	6.00×10^{4}	4.03×10^{4}	3.87×10	1.04×10	8.72×10	4.62×10^{-9}
15,000	$7.920 \times$	4.913 $\times 10^{8}$	1.405	99	17,	6.318×10^{6}	5.82×10^{-18}	2.75×10^{-2}	6.55×10^{-8}	2.87×10^{-2}	5.85×10^{4}	4.76×10^{4}	3.97×10^{1}	1.20×10^{-1}	$8.94 \times$	5.32×10^{-8}
16,000	8.448	+ 4.983×10^{8}	1.268	. 66	17,	1.062×10^{0}	5.79×10^{-10}	2.74×10^{-1}	4.29×10^{-1}	. $88 \times$	5.75×10^{4}	5.86×10^{4}	4.04	1.45	9.10×	6.44 $\times 10^{10}$
16,523	$8.724 \times 10^{+}$	5.017×10^{8}		. 50		$1.483 \times 10^{\circ}$	10^{-}	3×10	3.24×10	42	6×10	6.75×10^{4}	4.11	1.64×10^{-8}	9.24	. 30

$1 \mathrm{lb} / \mathrm{ft}^{3}=0.3391 \mathrm{~mm}$ of Hg

Table 21
atmospheric model I - values of temperature, pressure, and density above the facher, based on $\mathbf{u}_{\boldsymbol{L}}=7$
Latitude, 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3}$ slug $/ \mathrm{ft}^{3}$

		Potential$\phi$$\mathbf{f t - l b}$	$\left\|\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ q^{\prime} \\ \mathrm{ft} / \mathrm{sec}^{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { mean } \\ \text { Mol } \begin{array}{c} w_{6} \end{array} \\ m \end{gathered}\right.$	$\begin{gathered} \text { Temp } \\ T \\ { }^{\circ} \mathrm{H} \\ \hline \end{gathered}$	Scale Height ${ }^{H}$ ft	p $\mathrm{lb} / \mathrm{ft}^{\text {a }}$	Pressure Ratio p / p_{q}	Density slug/t ${ }^{8}$	Density Ratio $\stackrel{\sigma}{\rho / \rho_{a}}$	NumberDensitynparticles $/ \mathrm{ft}^{3}$	Mean Particle Speed $\mathrm{ft} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{om}$		$d=2 \times 10^{-8} \mathrm{~cm}$	
													Mean Free Path ${ }^{4}$	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \% \\ 1 / \text { sec } \\ \hline \end{gathered}$	Hean Free Path ft	$\begin{gathered} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ \nu / \mathrm{sec} \\ 1 / \mathrm{sec} \\ \hline \end{gathered}$
248	$1.352 \times 10^{\circ}$	0.000	393		3.240	2.362×10^{0}	4.33×10^{-7}	2.05	6.46	2.83×10^{-12}	2.38×10^{18}	13×10^{3}	9.77×10^{8}	4.23×10^{-1}	2.20×10^{4}	1.88×10^{-1}
300	$1.584 \times 10^{*}$	7.613×10^{8}	27.719	23.	3,498	2.645×10^{88}	1.46×10^{-7}	6.90×10^{-1}	$1,99 \times 10^{-14}$	8.71×10^{-18}	7.43×10^{18}	4.32×10^{3}	3.13 $\times 10^{4}$	1.38×10^{-1}	7.04×10^{4}	6.14×10^{-2}
350	1.848×10^{6}	1.494×10^{7}	27.078	42	3,743	$2,982 \times 10^{5}$	5.67×10^{-8}	2.68×10^{-14}	7.14×10^{-18}	3.12×10^{-18}	2.70×10^{12}	4.50×10^{2}	8.61×10^{4}	5.23×10^{-8}	1.94×10^{8}	2.32×10^{-2}
400	$2.112 \times 10^{\circ}$	2.191×10^{7}	26.459	23.14	3,983	3.232×10^{2}	2.41×10^{-7}	1.14×10^{-12}	2.82×10^{-18}	1.23×10^{-12}	1.08×10^{18}	4.67×10^{3}	2.15×10^{8}	2.17×10^{-8}	4.84×10^{8}	9.64×10^{-3}
450	$2.376 \times 10^{\circ}$	2. 381×10^{7}	25.861	22.87	4,217	$3.542 \times 10^{\circ}$	1.10×10^{-8}	5.20×10^{-18}	1.20×10^{-10}	5.25×10^{-13}	4.64×10^{11}	4.83×10^{2}	$5.01 \times 10^{\circ}$	9.64×10^{-8}	$1.13 \times 10^{\circ}$	4.28×10^{-3}
500	2.640×10^{8}	3.557×10^{9}	25.204	22.61	4.447	3.854×10^{8}	5.40×10^{-2}	2.55×10^{-12}	5.53×10^{-18}	2.42×10^{-15}	2.16×10^{11}	4.99×10^{3}	$1.08 \times 10^{\circ}$	$4,64 \times 10^{-3}$	2.42×10^{8}	2.06×10^{-3}
600	$3.168 \times 10^{\circ}$	4.862×10^{7}	24.184	22.10	4,889	4.544×10^{8}	1.53×10^{-9}	7.23×10^{-17}	1.39×10^{-18}	6.08×10^{-14}	5.57×10^{10}	5.29×16^{4}	4.17×10^{8}	1.27×10^{-8}	9.39×10^{6}	5.63×10^{-4}
700	$3.696 \times 10^{\text {e }}$	6. 112×10^{7}	23.155	21.61	5,313	5.275×10^{8}	5.21×10^{-16}	2.46×10^{-13}	4.27×10^{-17}	1.87×10^{-1}	1.75×10^{10}	5.58×10^{2}	1.33×10^{7}	4.20×10^{-4}	$2,99 \times 10^{7}$	$1,87 \times 10^{-6}$
800	4.224×10^{5}	7.309×10^{7}	22.	21.14	5,719	6. 055×10^{6}	2.05×10^{-10}	9.69×10^{-14}	1.53×10^{-17}	6.69×10^{-18}	6.40×10^{9}	5.85×10^{9}	3.63×10^{7}	1.61×10^{-4}	8.17×10^{7}	7.16×10^{-8}
900	4.752×10^{8}	8.457×10^{7}	21.284	20.70	6, 109	6.888×10^{8}	9.03×10^{-11}	4.27×10^{-14}	$\frac{1.35 \times 10^{-78}}{6.16}$	2.69×10^{-15}	2.63×10^{-6}	6.11×10^{3}	8.84×10^{7}	6.91×10^{-8}	1.99×10^{8}	3.07×10^{-5}
1,000	5.280×10^{6}	9. 555×10^{7}	20.432	. 27	6,482	7.775×10^{8}	4.39×10^{-11}	2.08×10^{-14}	2.76×10^{-18}	1.21×10^{-18}	$1.20 \times 10^{\circ}$	6.36×10^{3}	1.92×10^{8}	3.31×10^{-8}	4.32×10^{6}	1.47×10^{5}
1,200	$6.336 \times 10^{\circ}$	1.163 $\times 10^{8}$	18.904	9.45	7,185	9.702×10^{8}	1.30×10^{-12}	6.15×10^{-10}	$\frac{7.09 \times 10^{-18}}{}$	3.10×10^{-10}	3.22×10^{8}	6.83×10^{3}	7.22×10^{8}	9.45×10^{-8}	1.62×10^{2}	4.20×10^{-6}
1,400	7.392×10^{8}	1.356×10^{8}	17.520	18.70	7,840	1.189×10^{6}	$4,87 \times 10^{-12}$	2.30×10^{-25}	2.34×10^{-18}	1.02×10^{-10}	1.11×10^{6}	7.28×10^{5}	2.09×10^{4}	3.48×10^{-6}	$4.71 \times 10^{\circ}$	1.55×10^{-6}
1,500	7.920×10^{5}	1.446×10^{8}	16.885	18.35	8,145	1.306×10^{8}	3.19×10^{-12}	1.51×10^{-18}	1.45×10^{-18}	6.34×10^{-17}	6.99×10^{7}	$7.49 \times 10^{*}$	3.33×10^{8}	2.25×10^{-6}	7.48×10^{8}	1.00×10^{-0}
1,750	$9.240 \times 10^{\circ}$	1.659×10^{8}	440	17.52	8,857	$1.628 \times 10^{\text {e }}$	1.29×10^{-12}	6.10×10^{-10}	5.13×10^{-20}	2.24×10^{-1}	2. 59×10^{7}	$8,00 \times 10^{8}$	$8.98 \times 10^{* \prime}$	8.91×10^{-7}	2.02×10^{10}	3.96×10^{7}
2,000	1.056×10^{7}	1.854×10^{8}	14.173	116.76	9,529	1.993×10^{8}	6.20×10^{-13}	$2,93 \times 10^{-18}$	2.20×10^{-20}	9.62×10^{-18}	1.16×10^{7}	$8,48 \times 10^{3}$	2.00 210^{10}	4.23×10^{-7}	4.51×10^{18}	1.88×10^{-7}
2,500	1.320×10^{7}	$2,200 \times 10^{8}$	12.720	15.40	10,703	2.714×10^{6}	2.05×10^{-18}	9.69×10^{-17}	5.94×10^{-24}	2.60×10^{-18}	3.41×10^{6}	9.38×10^{3}	6.82×10^{10}	1.38 $\times 10^{-7}$	1.53×10^{12}	6.12×10^{-8}
3,000	1.584×10^{7}	2.495×10^{8}	10.398	4.25	11,703	3.924×10^{6}	9.32×10^{-14}	4.41×10^{-17}	2.28×10^{-22}	9.97×10^{-18}	1.42×10^{8}	1.02×10^{4}	1.64×10^{13}	6.23×10^{-8}	3.68×10^{13}	2.77×10^{-8}
4,000	2.112×10^{7}	2.975×10^{8}	7.953	. 38	13,331	6.721×10^{5}	3.32×10^{-19}	1.57×10^{-17}	6.21×10^{-22}	2.72×10^{-19}	4.44×10^{5}	1.17×10^{4}	5.24×10^{71}	2.23×10^{-8}	1.18×10^{12}	9.93×10^{-8}
5,000	$2.640 \times 10^{*}$	$3.349 \times 10^{\text {a }}$	6.281	10.92	14,600	1.057×10^{7}	1.78×10^{-14}	8.42×10^{-18}	2.68×10^{-22}	1.17×10^{-18}	2.17×10^{8}	1. 30×10^{4}	1.07×10^{18}	1.21×10^{-18}	2.41×10^{12}	5.39×10^{-8}
6,000	3.168×10^{7}	3.647×10^{8}	5.086	9.75	15,611	1.564×10^{7}	1.18×10^{-14}	5.58×10^{-18}	1.48×10^{-98}	6.47×10^{-20}	1.34×10^{8}	1.42×10^{4}	1.73×10^{12}	8.19×10^{-9}	3.90×10^{12}	3.64×10^{-9}
7,000	3.696×10^{7}	3.891×10^{8}	4.203	8.80	16,439	$\frac{2.208 \times 10^{7}}{}$	8.85×10^{-15}	4.18×10^{-18}	9.54×10^{-23}	4.17×10^{-20}	9,59 $\times 10^{4}$	1.54×10^{4}	2.42×10^{12}	6.35×10^{-8}	5.45×10^{12}	2.82×10^{-5}
8,000	4.224×10^{7}	4.095×10^{8}	3.531	8.00	17,131	3.013×10^{7}	7.21×10^{-18}	3.41×10^{-14}	6.78×10^{-93}	2.97×10^{-36}	7.50×10^{4}	1.65×10^{4}	3.10×10^{14}	5.32×10^{-8}	6.97×10^{18}	2.37×10^{-9}
9,900	4.752×10^{7}	$4.267 \times 10^{*}$	3.009	7.33	17,714	3.990×10^{7}	6.19×10^{-18}	2.93×10^{-14}	5.16×10^{-83}	2.26×10^{-20}	6.23×10^{4}	1.75×10^{4}	3.73 $\times 1{ }^{10^{12}}$	4.69×10^{-8}	8.40×11^{12} 9	2.08×10^{-8}
9,553	5.044×10^{7}	$4.351 \times 10^{\text {8 }}$	2.768	7.00	18,000	4.615×10^{4}	5.78×10^{-28}	2.73×10^{-18}	4.43×10^{-83}	1.94×10^{-20}	5.66×10^{4}	1.80×10^{4}	4.11×10^{13}	4.38×10^{-8}	9.24×10^{12}	1.95×10^{-9}

$1 \mathrm{Lb} / \mathrm{ft}^{*}=0.3591 \mathrm{~mm}$ of Hg
atmospheric model I - values of temperature, pressure, and density above the \boldsymbol{F}_{2} layer, based on $\boldsymbol{u}_{\boldsymbol{L}}=14$
Latitude 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Height h		Potential ft-lb	$\left\lvert\, \begin{aligned} & \text { Apparent } \\ & \text { Gravity } \\ & \boldsymbol{g}^{4} \\ & \mathrm{ft} / \mathrm{sec}^{2} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \left.\begin{array}{c} \text { man } \\ \mathrm{Moll} \\ w \\ w \\ w \end{array} \right\rvert\, \end{gathered}\right.$	$\begin{gathered} \text { Tenp } \\ T \\ { }^{\circ} \mathrm{R} \end{gathered}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \text { ft } \end{gathered}$	p $1 \mathrm{~b} / \mathrm{ft}^{\mathrm{a}}$	Pressure Hatio p / P_{d}	Density slug/ft ${ }^{2}$	Density Ratio ρ / p_{a}	NumberDensitynparticles $/ \mathrm{ft}^{3}$	Meam Parti. cle Speed $\mathrm{ft} / \mathrm{sec}$	$d .3 \times 10^{-3} \mathrm{~cm}$		$d=2 \times 10^{-8} \mathrm{~cm}$		
		Hean Free Peth L $f t$											Mean Colli:sion Freq 1/sec	Wean Free Path f	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \mathcal{F} \\ 1 / \mathrm{sec} \end{gathered}$		
240	1.312×10^{6}		0.000	28.393		3240	20 $\times 10^{3}$	4.33×10^{-4}	2.05	6.46×10^{-14}	2.83×10^{-11}	2.38	${ }^{*}$	+ 10^{*}	-	10^{4}	10^{-1}
300	1.584×10^{80}	$7.613 \times$	27.732	23,80	3335	2.666×10^{8}	1.47×10^{-7}	6.95×10	1.99	$8.71 \times$	7.40×10^{12}	4.33×10^{8}	3.141×10^{4}	1.3785×10^{-1}	7.067×10^{4}	6.13×10^{-7}	
350	$1.848 \times 10^{\circ}$	1.484×10^{7}	27.093	23.61	3815	$2.9627 \times 10^{\text {a }}$	5.74×10^{-8}	2.71×10^{-1}	7.15×10^{-14}	3.13×10^{-18}	2.68×10^{18}	4, $32 \times 10^{\circ}$. 614×10^{4}	5.211×10	1.952 $\times 10^{4}$	32×10^{-8}	
400	2.112×10^{6}	2.191×10^{7}	26.505	23.42	4089	3.2723×10^{8}	2.46×10^{-8}	1.16×10^{-12}	2.84×10^{-18}	1.24×10^{-19}	1.07×10^{17}	4.70×10^{3}	2.173×10^{6}	2.163×10^{-2}	4.888×10^{6}	9.61×10^{-3}	
450	$2.376 \times 10^{\circ}$	2.881×10^{2}	25.879	23.24	4357	3.5988×10^{6}	1.14×10^{-8}	5.39×10^{-19}	1.22×10^{-18}	5.34×10^{-19}	4.65×10^{11}	$4.87 \times 10^{*}$	$4.999 \times 10^{\circ}$	9.742×10^{-8}	1. 125×10^{4}	4.33×10^{-3}	
500	2.640×10^{6}	3.557×10^{7}	25.303	23.07	4619	3.9308×10^{8}	5.66×10^{-9}	2.68×10^{-19}	5.69×10^{-16}	2.49×10^{-38}	2.18×10^{21}	5.03×10^{8}	1.066×10^{8}	4.7186×10^{-9}	2.398×10^{8}	2. 10×10^{-2}	
600	3.168×10^{8}	$4.862 \times 10^{\prime}$	24.207	22.72	5125	4.6291×10^{8}	1.64×10^{-9}	7.75×10^{-13}	1.46×10^{-16}	6.39×10^{-14}	5.69×10^{19}	5.34×10^{8}	4.085×10^{6}	1.307×10^{-3}	9.191×10^{6}	5.81×10^{-4}	
700	$3.696 \times 10^{\text {b }}$	$6.112 \times 10^{\prime}$	23.180	22.	56	5.3687×10^{8}	5.70×10^{-10}	2.70×10^{-13}	4.58×10^{-17}	2.00×10^{-14}	1.81×10^{10}	5.63×10^{8}	$1.284 \times 10^{+}$	4. 385×10^{-6}	2.889×10^{7}	1.95×10^{-4}	
800	4. 224×10^{8}	7.310×10^{7}	22.218	22.08	6074	6.1507×10^{5}	2.28×10^{-10}	1.08×10^{-13}	1.67×10^{-17}	7.31×10^{-15}	6.69×10^{9}	5.90×10^{3}	3.475×10^{7}	1.698×10^{-4}	7.819×10^{7}	7.55×10^{-8}	
900	4.752×10^{6}	8.458×10^{7}	21,314	21.78	6519	6.9761×10^{8}	1.02×10^{-10}	4.82×10^{-14}	6.86×10^{-18}	3.00×10^{-18}	2.79×10^{9}	6.15×10^{3}	8.332×10^{7}	7.381×10^{-8}	1.875×10^{8}	3.28×10^{-8}	
10	$5.280 \times 10^{\circ}$	$9.560 \times 10^{\prime}$	20.465	. 49	6946	7.8459×10^{8}	4.99×10^{-14}	$2.36 \times 10^{-1+}$	3.11×10^{-18}	1.36×10^{-18}	1.28×10^{9}	$6.39 \times 10^{*}$	1.816×10^{8}	3.519×10^{-8}	4.086×10^{8}	1.56×10^{-5}	
1200	6. $336 \times 10^{\circ}$	1.164×10^{8}	${ }_{12}$	20.94	71	9.7241×10^{8}	1.49×10^{-11}	7.04×10^{-15}	8.10×10^{-19}	3.54×10^{-18}	$\frac{3.42 \times 10^{8}}{1.20}$	6.84×10^{3}	$6.797 \times 10^{*}$	1.006×10^{-8}	1.529×10^{2}	4.47×10^{-4}	
1400	7.392×10^{6}	1.356×10^{8}	529	44	8496	1.1780×10^{5}	5.55×10^{-12}	2.62×10^{-18}	2.69×10^{-16}	1.18×10^{-20}	1.15×10^{8}	7.25×10^{3}	2.004×10^{8}	3.618×10^{-6}	$4.509 \times 10^{\circ}$	1.61×10^{-6}	
15	7.920×10^{6}	1.447×10^{8}	16.894	20.20	8849	1.2881×10^{6}	3.61×10^{-12}	1.71×10^{-18}	1.66×10^{-18}	7.26×10^{-17}	7.27×10^{7}	7.44×10^{8}	3.1975×10^{4}	2.327×10^{-6}	$7.194 \times 10^{\circ}$	$1,03 \times 10^{-8}$	
1750	9.240×10^{6}	$1.660 \times 10^{\text {e }}$	5.450	19.64	9675	1.5889×10^{6}	1.44×10^{-18}	6.81×10^{-98}	5.88×10^{-80}	2.57×10^{-17}	$\frac{2.65 \times 10^{7}}{}$	$\frac{7.89 \times 10^{8}}{}$	8.772×10^{81}	8.995×10^{-7}	1.974×10^{10}	$4,00 \times 10^{-7}$	
2000	1.056×10^{7}	1.855×10^{8}	14.183	19.13	10,430	1.9097×10^{8}	6.73×10^{-12}	3.18×10^{-18}	2.48×10^{-8}	1.08×10^{-17}	1.15×10^{7}	8.30×10^{3}	2.021×10^{10}	4.107×10^{-7}	4.547×10^{18}	1.83×10^{-7}	
2500	1.320×10^{7}	$2,201 \times 10^{\text {a }}$	12.732	18.22	11, 772	2.5209×10^{6}	$2.08 \times 10^{-3 / 4}$	9.83×10^{-17}	6.48×10^{-81}	2.83×10^{-18}	3.15×10^{8}	9.04×10^{4}	7.380×10^{18}	1.225×10^{-7}	1.660×10^{11}	5.44×10^{-8}	
3000	1.584×10^{7}	2.497×10^{8}	10,409	17.42	12.919	3.5354×10^{6}	8.79×10^{-14}	4.16×10^{-17}	2.39×10^{-31}	1.05×10^{-18}	1.21×10^{6}	9.68×10^{8}	. 921×10^{12}	5.039×10^{-8}	4.322×10^{11}	2.24×10^{-8}	
4000	2.112 $\times 10^{7}$	2.977×10^{8}	7.964	16.18	14,779	5.6974×10^{6}	2.71×10^{-14}	1.28×10^{-17}	5.97×10^{-92}	2.61×10^{-28}	3.27×10^{8}	1.07×10^{4}	7.109×10^{11}	1.505×10^{-8}	1.600×10^{12}	6.69×10^{-6}	
5000	2.640×10^{2}	3.351×10^{8}	6.290	15.20	16,229	8.4324×10^{8}	1.27×10^{-14}	6.00×10^{-18}	2.39×10^{-28}	1.05×10^{-18}	1.39×10^{5}	$1.16 \times 10^{*}$	1.672×10^{18}	6.938×10^{-8}	3.762×10^{18}	3.08×10^{-8}	
6000	3.168×10^{7}	3.650×10^{8}	5.094	14.41	17,388	1.1767×10^{7}	7.44×10^{-25}	3.52×10^{-10}	1.24×10^{-28}	5.42×10^{-20}	7.61×10^{4}	1.24×10^{4}	3.055×10^{12}	4.059×10^{-8}	6.874×10^{12}	1.80×10^{-8}	
6622	3.496 $\times 10^{7}$	3.808×10^{6}	4.514	14.00	18,000	1.4149×10^{7}	5.78×10^{-18}	2.73×10^{-18}	9.26×10^{-85}	4.05×10^{-10}	5.66×10^{4}	$1.28 \times 10^{+}$	4.107×10^{18}	3.117×10^{-6}	9.241×10^{14}	1.39×10^{-9}	

$1 \mathrm{lb} / \mathrm{ft}^{2}=0.3591 \mathrm{~mm}$ of Hg

Table 23
atmospheric model 1 - values of temperature, pressure, and density above the fa layer, based on $\boldsymbol{u}_{L}=0.5$
Latitude 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-8} \mathrm{gm} / \mathrm{cm}^{3}$

Height		Potential$\underset{\text { ergs }}{\phi}$	$\left\|\begin{array}{c} \text { Apparent } \\ \text { Gravity } \\ s^{\prime} \\ c n / s^{\prime} c^{*} \end{array}\right\|$	Mean Mol wt H	$\begin{gathered} \text { Temp } \\ T \\ { }^{*} \mathrm{~K} \end{gathered}$	Scale Height H kn	millibars	Presaure Ratio p / p_{a}	Densitycm^{*}	Density Aatio ρ / ρ_{a}	NumberDensitynparcicies $/ \mathrm{cm}^{3}$	Mean Particle Speed v $\mathrm{cm} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-8} \mathrm{~cm}$	
		Mean FreePachLcm											$\begin{array}{\|c\|} \hline \text { Mean Colli- } \\ \text { sion Freq } \\ 2 \\ 1 / \mathrm{sec} \\ \hline \end{array}$	Mean Free Path L cm	$\begin{gathered} \text { Mean Colli- } \\ \text { sion Freq } \\ \text { /y } \\ \text { 1/sec } \end{gathered}$	
km	mi															
400.0	248	0.000				7.199×10	2.04×10^{-7}	$2.05 \times 10^{-}$	3.32×10^{-12}	2.82×10^{-11}	. 40×10^{8}	1.26×10^{5}	10.	4.23×10^{-1}	6.70 $\times 10^{5}$	
482.		1.032×10^{14}	845.10	23.64	1924	8.002×10	6.98×10^{-8}	$6.90 \times 10^{+11}$	1.03×10^{-14}	8.75×10^{-18}	$2.65 \times 10^{\circ}$	$1,31 \times 10^{6}$	9.46×10^{6}	1.39×10^{-1}	2.13×10^{8}	6.16× 10^{-4}
563.3	350	2.012×10^{14}	825.60	23.30	2043	8.822×10	2.68×10^{-8}	2.65×10^{-11}	3.68×10^{-10}	3.12×10^{-1}	9.57×10^{7}	$1.36 \times 10^{\text {a }}$	2.61×10^{8}	5.21×10^{-2}	$5.88 \times 10^{\text {a }}$	2.32×10^{-2}
643.8	400	2.971×10^{14}	807.66	22.9	2158	9.665×10	1.12×10^{-8}	1.11×10^{-1}	1.44×10^{-1}	1.22×10^{-1}	3.78×10^{7}	$1.41 \times 10^{\circ}$	6.62×10^{2}	2.13×10^{-2}	1.49×10^{7}	9.45×10^{-3}
724.	450	3.907×10^{14}	788.57	22.65	2271	1.056×10^{2}	5.07×10^{-0}	5.01×10^{-12}	6.08×10^{-18}	5.16×10^{-1}	1.63×10^{7}	1.46×10^{8}	1.54×10^{7}	9.48×10^{-3}	3.46×10^{7}	4.21×10^{-3}
04.7	500	4.822×10^{44}	770.99	22.33	2381	1.149×10^{4}	2.44×10^{-8}	2.41×10^{-12}	2.75×10^{-18}	2.34×10^{-13}	7.49×10^{6}	1.50×10^{6}	3.34×10^{7}	4.50×10^{-3}	7.52×10^{7}	2.00×10^{-3}
965.	600	6.593×10^{24}	737.53	21.72	2594	1.345×10^{2}	6.68×10^{-10}	6.62×10^{-18}	6.75×10^{-17}	5.73 $\mathbf{5}^{10^{-14}}$	1.89×10^{6}	$1.59 \times 10^{\circ}$	1.33×10^{8}	1.20×10^{-2}	2.99×10^{8}	5.32×10^{-4}
1127	700	8.287×10^{14}	706.21	21.14	2799	$1.557 \times 10^{*}$	2.20×10^{-10}	2.17×10^{-18}	2.00×10^{-17}	1.70×10^{-14}	5.72×10^{8}	1.67×10^{6}	$4.37 \times 10^{*}$	3.83×10^{-1}	9.84×10^{8}	1.70×10^{-4}
128%	800	9.910×10^{34}	676.84	20.58	2994	1.786×10^{2}	8.39×10^{-14}	8.27×10^{-14}	6.95×10^{-1}	5.91×10^{-1}	2.05×10^{8}	1.76×10^{5}	1.22×10^{4}	1.44×10^{-4}	2.75×10^{9}	1088
1448	900	1.147×10^{26}	649.26	20.04	3182	2.031×10^{2}	3.60×10^{-11}	3.56×10^{-14}	2.73×10^{-12}	2.32×10^{-15}	8.26×10^{0}	$1.83 \times 10^{\circ}$	3.03×10^{6}	6.05 $\times 10^{\text {088 }}$	6.81×10^{8}	2.69×10^{-8}
1609	1000	1.296×10^{16}	623.34	19.52	3362	2.295×10^{3}	1.71×10^{-11}	1.69×10^{-14}	1.19×10^{-1}	1.01×10^{-1}	3.71×10^{4}	1.91×10^{6}	6.75×10^{6}	2.83×10^{-8}	1.52×10^{10}	1.26×10^{-8}
1931	1200	1.577×10^{18}	575.94	18.55	3701	2.877×10^{2}	4.90×10^{-18}	4.82×10^{-18}	2.95×10^{-18}	2.51×10^{-10}	$9,64 \times 10^{0}$	2.05×10^{8}	2.60×10^{10}	7.92×10^{-6}	5.84×10^{10}	3.52 $\times 10^{-6}$
2253	1400	1.883×10^{13}	533.75	17.65	4014	3.540×10^{8}	1.79×10^{-18}	1.76×10^{-13}	9.42×10^{-30}	8.01×10^{-17}	3.24×10^{0}	2.19×10^{5}	7.73×10^{10}	2.84×10^{-8}	1.74×10^{11}	1.26×10^{-7}
2414	1500	1.961×10^{18}	514.37	7.23	4163	3.902×10^{8}	1.16×10^{-18}	1.14×10^{-13}	5.77×10^{-30}	4.90×10^{-17}	2.03×10^{5}	$2.26 \times 10^{*}$	1.23×10^{11}	1.84×10	2.77	8.16×10^{-7}
2816	1750	2.250×10^{18}	470.31	23	4511	4.909×10^{2}	4.61×10^{-13}	4.56×10^{-36}	$\frac{2.00 \times 10^{-20}}{}$	1.70×10^{12}	7.49×10^{2}	2.45×10^{6}	3.34×10^{11}	7.26×10^{-7}	7.52×10^{12}	3.23×10^{-7}
3219	2000	2.514×10^{10}	431.67	. 3	4830	6.067×10^{2}	2.21×10^{-18}	2.17×10^{-10}	8.45×10^{-2}	7.17×10^{-18}	3.34×10^{2}	2.58×10^{8}	7.48×10^{17}	3.45 $\times 10^{-7}$	1.68×10^{13}	1.53×10^{-7}
402	250	2.982×10^{18}	387.36	13.70	5394	$8.444 \times 10^{*}$	7.38×10^{-1}	7.28×10^{-1}	2.25×10^{-81}	1.91×10^{-18}	9.96×10	2.89×10^{8}	2.51×10^{18}	1.15×10^{-7}	$5.65 \times 10^{1 *}$	5.11×10^{-8}
4828	300	3.362×10^{18}	316.52	12.32	5876	1.252×10^{8}	3.44×10^{-14}	3.39×10^{-17}	8.65×10^{-28}	7.35×10^{-18}	4.27×10	3.17×10^{8}	5.86×10^{18}	5.41×10^{-8}	1.32×10^{13}	2.41×10^{-8}
64	4000	4.031×10^{10}	242.00	10.08	665	2.268×10^{2}	1.32×10^{-14}	1.30×10^{-17}	2.39×10^{-31}	2.03×10^{-18}	1.44×10	3.75×10^{6}	1.74×10^{18}	2.16×10^{-6}	3.91×10^{13}	9.59×10^{-8}
8047	5000	4.537×10^{15}	191.02	33	68	3.795×10^{4}	7.58×10^{-48}	7.47×10^{-18}	1.05×10^{-38}	8.88×10^{-80}	7.63	$4.30 \times 10^{\text {n }}$	3.28×10^{1}	1.31×10^{-8}	7.38×10^{1}	5.82×10^{-8}
9656	6000	4.941×10^{16}	154.62	6.93	7755	6.012×10^{3}	5.40×10^{-18}	5.34×10^{-19}	$\frac{5.82 \times 10^{-33}}{3.71 \times 10^{-28}}$	$\frac{4.94 \times 10^{-20}}{315 \times 10^{-20}}$	5.09	$\frac{4.88 \times 10^{\circ}}{5.6 \times 1}$	$4.92 \times 10^{* 3}$	9,91 $\times 10^{-8}$	1.11×10^{14}	
11,266	7000	5.271×10^{18}	127.7	5.	8152	9.159×10^{3}	$4.35 \times 10^{-}$	4.29×10^{1}	3.71×10^{-1}	3.15×10^{-7}	3.88	5.46×10^{6}	5.44× 10^{13}	8.47×10^{-9}	1.45×10^{14}	3.76×10^{-9}
12,875	8000	$5.546 \times$	107.92	4.	8484	1.357×10^{4}	3.76 $\times 10^{-88}$	3.71×10^{-18}	2.58×10^{-83}	2.19×10^{-80}	3.23	6.10×10^{5}	7.75×10^{13}	7.86×10^{-8}	1.74×10^{1}	3.50×10^{-8}
14,484	9000	5.779×10^{10}	91.40	4.04	8.65	1.972×10^{4}	3.40×10^{-10}	3.36×10^{-18}	1.88×10^{-48}	1.60×10^{-30}	2.83	6.77×10^{8}	8.81×10^{10}	7.68×10^{-6}	1.98×10^{14}	3.41×10^{-8}
16,094	10,000	5.979×10^{18}	78.81	3.35	9006	2.833×10^{4}	3.17×10^{-18}	3.13×10^{-18}	1.42×10^{-88}	1.21×10^{-88}	2.57	7.53×10^{6}	$9,72 \times 10^{3}$	7.75×10^{-1}	2.19×10^{14}	3.44×10^{-6}
17,703	11,000	$6.151 \times 10^{10^{15}}$	68.65	2.76	9213	4.040×10^{4}	3.03 $\times 10^{-18}$	2.99×10^{-18}	1.09×10^{-23}	9, 27×10^{-81}	2.40	8.41×10^{6}	1.04×10^{14}	$8.07 \times 10^{-}$	2.34×10^{1}	3.59×10^{-8}
19,312	12.000	$\frac{6.303 \times 10^{25}}{}$	60.35	2.23	939	5.800×10^{4}	$\frac{2.93 \times 10^{-18}}{2.87 \times 10^{-18}}$	$\frac{2.89 \times 10^{-18}}{2.89 \times 10^{-10}}$	$\frac{8.34 \times 10^{-24}}{60 \times 10^{-84}}$	$\frac{7.09 \times 10^{-23}}{54.00^{-21}}$	2.27	$\frac{9.45 \times 10^{\circ}}{107}$	1.10×10^{14}	8.57×10^{-2}	2.48×10^{4}	3.81×10^{-8}
20,922	13,000	6.436×10^{10}	53.46	1.77	9556	8.389×10^{4}	2.87×10^{-1}	2.82×10^{-1}	$6.39 \times 10^{\text {a }}$	5.42×10^{-2}	2.19	1.07×10^{8}	1.14×10^{14}	9.36×10^{-8}	2.57×10^{1}	4.16×10^{-2}
22,531	14,000	6.555×10^{10}	47.70	1.36	9700	$1.24{ }^{2} \times 10^{6}$	12.81×10^{-18}	2.78×10^{-18}	4.75×10^{-2}	$4.03 \times 10^{-8.21}$	2.12	1.23×10^{0}	1.18×10^{2}	1.04×10^{-8}	$2.66 \times 10^{*}$	4.62×10^{-6}
24, 340	15,000	6.662×10^{15}	42.81	. 99	9829	1.926×10^{8}	2.79×10^{-18}	2.75×10^{-210}	3.37×10^{-94}	$\frac{2.87 \times 10^{-21}}{10^{-82}}$	2.02	1.45×10^{9}	1.21×10^{24}	1.20×10^{-8}	2.73×10^{14}	5.32×10^{-8}
25,750	16,000	6.757×10^{18}	38.65	. 66	9943	3.236×10^{88}	$\frac{2.77 \times 10^{-78}}{}$	2.74×10^{-18}	2.21×10^{-46}	1.88×10^{-81}	2.03	1.79×10^{6}	1.23×10^{2}	$1.45 \times 10^{-}$	2.77×10^{12}	6.44×10^{-9}
26,591	16,523	6.803×10^{10}	36.76	. 50	0,0	4.520×10^{6}	$2.78 \times 10^{-}$	2.73×10^{-18}	1.67×10^{-1}	1.42×10^{-2}	2.00	2.06×10^{8}	$1.25 \times$	1.64×10^{-8} 2	2.82×1	30

1 milliber $(\mathrm{mb})=10^{2} \mathrm{dynes} / \mathrm{cm}^{2}=0.750 \mathrm{~mm}$ of H / s

Table 24

ATMOSPHERIC MODEL 1 - VALUES OF TEMPERATURE, PRESSURE, AND DENSITY ABOVE THE F 2 LAYER, BASED ON M $=7$
Latitude 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height		Potencial ergs	Apparent Gravity $\mathrm{cm} / \mathrm{sec}^{\circ}$ canser	$\begin{gathered} \text { Mean } \\ \text { Mol } \\ \hline \\ n \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} \operatorname{emp} \\ T \\ { }^{{ }_{\mathrm{K}}^{\mathrm{K}}} \end{gathered}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \mathrm{~km} \end{gathered}$	Pressure $\stackrel{p}{\text { millibars }}$	Presaure Hatio p / p_{a}	Density $\stackrel{o}{a}$	Density Ratio $\stackrel{\sigma}{p} \rho_{a}$	NunberDensitynparticles $/ \mathrm{cm}^{3}$	Mean Partiele Speed $\mathrm{cm} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-38} \mathrm{~cm}$		
		$\begin{aligned} & \text { Mean Free } \\ & \text { Path } \end{aligned}$											$\begin{aligned} & \text { Mean Colli- } \\ & \text { sion Freq } \end{aligned}$	Mean Free Peth	$\begin{aligned} & \text { Mean Colli- } \\ & \text { sion Freq } \end{aligned}$		
	mi																
400.0	24		0		24.00					3.33	,	8.40×10^{80}		2.98×10^{-1}	4.23×10^{-2}		
482.	300	1.032	945.18	23.	1943	8.062×10	6.99×10^{-8}	$6.90 \times$	1.02×10^{-1}	8.71×10^{-1}	2.62×10^{8}	1.32×10^{8}	9.54×10^{0}	1.38×10^{-1}	2.15×10^{8}	6.14×10^{-8}	
563.	350	2.012×10^{44}	325.69	23.42	2099	8.937×10	2.72×10^{-8}	2.68×10^{-11}	3.68×10^{-1}	3.12×10^{-1}	9.54×10^{7}	$1.37 \times 10^{*}$	2.62×10^{8}	5.23×10^{-1}	5.90×10^{8}	2.32 $\times 10^{-8}$	
643.8	400	2.971×10^{14}	807.76	23.14	2213	9.850 \times	1.15×10^{-8}	1.14×10^{-1}	1.45×10^{-1}	1.23×10^{-1}	3.81×10^{7}	1.42×10^{8}	6.56×10^{6}	2.17×10^{-1}	1.48×10^{2}	9.64×10^{-1}	
	45	3.907×10^{24}	788,69	22.8	2343	$1.080 \times$	5.27×10^{-8}	5.20×10^{-1}	6.18×10^{-1}	5.25×10^{-13}	1.64×10^{7}	$1.47 \times 10^{\circ}$	1.53×10^{7}	9.64×10^{-3}	3.44×10^{7}	4.28×10^{-3}	
804.7	500	4.823×10^{14}	771.11	22.61	2471	1.178×10^{2}	2.59×10^{-0}	2.55×10^{-18}	$\frac{2.85 \times 10^{-19}}{7.16 \times 10^{-27}}$	2.42×10^{-13}	7.63×10^{8}	1.52×10^{8}	3.29×10^{7}	4.64×10^{-3}	7.30×10^{2}	2.06×10^{-8}	
956	500	6.593×10^{14}	737,68	22.10	2716	1.385×10^{9}	7.33×10^{-1}	7.23×10^{-13}	7.16 $\times 10^{-74}$	6.08×10^{-10}	1.97×10^{68}	1.61×10^{8}	1.27×10^{8}	$1.27 \times 10^{-}$	2.86×10^{6}	5.63×10^{-4}	
1127	700	8.288×10^{14}	37	21.61	2952	1.608×10^{4}	$2.50 \times 10^{-}$	2.46×10^{-12}	2.20×10^{-17}	1.87×10^{-1}	6.18×10^{6}	1.70×10^{8}	$4.05 \times 10^{\text {m }}$	$4.20 \times 10^{\circ}$	9.11×10^{4}	10-4	
12	800	9.911×10^{14}	12	14	3177	1.846×10^{2}	9.82×10^{-1}	9.69×10^{-1}	7.88×10^{-1}	6.69×10^{-1}	2.26×10^{5}	1.78×10^{8}	1.11×10^{8}	1.61×10^{-1}	2.49×10^{8}	7.16×10^{-8}	
1448	900	1.147×10^{18}	649.46	20.70	3394	2.150×10^{2}	4.32×10^{-1}	4.27×10^{-24}	3.17×10^{-11}	2.69×10^{-15}	9.29×10^{4}	1.86×10^{8}	$2.69 \times 10^{\circ}$	6.91×10^{-8}	$6,06 \times 10^{2}$	3.07×10^{-8}	
1609	1000	1.296×10^{18}	623.56	. 27	3601	2.370×10^{2}	2.10×10^{-1}	2.08×10^{-16}	1.42×10^{-1}	1.21×10^{-18}	4.24×10^{6}	1.94×10^{8}	$5.86 \times 10^{\text {s }}$	3.31×10^{-8}	1.32×10^{1}	1.47×10^{-8}	
1931	1200	1.577×10^{55}	576	19,46	3992	2.957×10^{2}	6.23×10^{-12}	6.15×10^{-18}	3.65×10^{-18}	3.10×10^{-10}	1.14×10^{4}	2.08×10^{6}	2.20×10^{1}	$9.46 \times 10^{-}$	$4.95 \times 10^{10^{2}}$	4.20×10^{-8}	
2253	1400	1.839×10^{20}	54.02	. 70	4356	3.623×10^{8}	2.33×10^{-12}	2.30×10^{-18}	1.21×10^{-20}	1.02×10^{-18}	3.92×10^{8}	2.22×10^{8}	6.38×10	$3.48 \times 10^{-}$	1.44×10^{17}	1.55×10^{-6}	
2414	1500	1.961×10^{10}	514.65	18.35	4525	$3.980 \times 10^{\text {a }}$	1.53×10^{-12}	1.51×10^{-14}	7.47×10^{-20}	6.34×10^{-17}	2.47×10^{3}	2.28×10^{8}	1.01×10^{2}	2.25	2.28×10^{1}	1.00×10^{-6}	
2816	1750	2.250×10^{18}	470.61	17.52	4926	4.963×10^{0}	6.18×10^{-13}	6.10×10^{-10}	2.64×10^{-20}	2.24×10^{-1}	9.15×10^{2}	2.44×10^{8}	2.74×10^{11}	8.91×10^{-1}	6.15×10^{1}	$3.96 \times$	
32	2000	2.514×10^{13}	432.00	16	5294	6.074×10^{2}	2.97×10^{-18}	2.93×10^{-10}	1.13×10^{-26}	$9.62 \times 10^{-}$	4.10×10^{2}	2.58×10^{8}	6.11×10^{11}	4.23×10^{-7}	1.37×10^{2}	1.88×10^{-7}	
		2.983×10^{10}	. 73		5946	8.273×10^{2}	$9.82 \times$	9.69×10^{-12}	3.06×10^{-881}	2.60×10^{-18}	1.20×10^{2}	2.86×10^{6}	2.08×10^{12}	1.38×10^{-7}	4.68×10^{12}	6.12×10^{-8}	
828	3000	3.383×10^{20}	316.92	4.25	6502	1.196×10^{3}	4.46×10^{-14}	4.41×10^{-1}	1.17×10^{-2}	9.97×10^{-19}	5.01×10	3.11×10^{8}	4.99×10^{18}	6.23×10^{-9}	1.12×10^{12}	2.77×10^{-8}	
6437	4000	4.034×10^{10}	242.42	. 38	7406	2.048×10^{8}	1.59×10^{-14}	1.57×10^{-17}	3.20× 10^{-38}	2.72×10^{-26}	1.57×10	3.57×10^{6}	1.60×10^{10}	2.23×10^{-1}	3.59×10^{13}	9.93×10^{-8}	
8047	5000	4.541×10^{16}	19	10.92	8111	3.223×10^{3}	8.52×10^{-18}	8.42×10^{-18}	1.38×10^{-28}	1.17×10^{-10}	7.66	3.96×10^{6}	3.26×10^{19}	1.21×10^{-1}	7.35×10^{1}	5.39×10^{-8}	
6556	6000	4.945×10^{10}	155.02	9.75	73	4.767×10^{4}	5.65×10^{-10}	5.58×10^{-18}	7.62×10^{-69}	6.47×10^{-2}	4.73	4.33×10^{8}	5.29×10^{18}	8.19×10^{-4}	1.19×10^{14}	3.64×10^{-8}	
11.256	,	5.276×10^{18}	128.10	8.80	9133	6.730×10^{3}	4.24×10^{-10}	4.18×10^{-18}	4.91×10^{-8}	4.17×10^{-9}	3.39	4.69×10^{8}	7.39×10^{18}	6.35×10^{-0}	1.66 $\times 10^{14}$	2.82×10^{-2}	
12,875	8000	5.553×10^{18}	107.63	a.	98	$9.182 \times$	3,45 \times	3.41×10^{-16}	3.49×10^{-88}	2.97×10^{-80}	2.65	5.03×10^{6}	9.45×10^{19}	5.32×10^{-9}	2.13×10^{14}	2.37×10^{-8}	
14,484	9000	5.786×10^{10}	91.70	7.33	9841	1.216×10^{4}	2.96×10^{-10}	$2.93 \times 10^{10}{ }^{18}$	2.66×10^{-29}	$2.26 \times 10^{\text {"20 }}$	2.20	5.33×10^{8}	1.14×10^{18}	4.69×10^{-18}	2.56×10^{14}	2.08×10^{-8}	
15,374	9553	5.903×10^{16}	84.38	7.00	10,000	1.407×1	$2,71 \times 10^{-1}$	$2.73 \times 10^{-}$	2.28×10^{-23}	1.94×10^{-90}	2.00	5.50×10^{8}	1.25×10^{10}	4.38×10^{-4}	$2.82 \times 10^{1 \cdot}$	2.8 $\times 10$	

Table 25
atmospheric model I - values of temperature, pressure, and density above the \boldsymbol{F}_{2} layer, based on $\mu_{l}=14$
Latitude 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height		Potential ϕ ergs	$\left.\begin{gathered} \text { Apparent } \\ \text { Gravity } \\ g^{*} \\ \mathrm{~m}^{2} / \mathrm{sec}^{z} \end{gathered} \right\rvert\,$	Hean Mol Wt M	$\begin{gathered} \text { Temp } \\ T \\ { }^{\circ} \mathrm{K} \end{gathered}$	Scale Height km	Pressure nillibars	Pressure Ratio p / p_{a}	Density $\stackrel{\rho}{\mathrm{gm} / \mathrm{cm}^{2}}$	Density Rotio ρ / ρ_{a}	Number Density n particles $/ \mathrm{cm}^{2}$	mean Parti- cle Speed * $\mathrm{cm} / \mathrm{sec}$	$d=3 \times 10^{-n} \mathrm{~cm}$		$d=2 \times 10^{-8} \mathrm{~cm}$	
		Mean Free Path L om											Mean Collision Freq $1 / \mathrm{sec}$	Man Free Path L cm	Mean Colli- sion Freq ν 1/sec	
km	m															
400.	248	0	865.42	24.00	180	10	2.07×10^{-7}	$2.05 \times 10^{-1.6}$	3.33	2.8	$8.40 \times 10^{\circ}$	1.26×10^{8}	2.98×10^{8}	4.23×10^{-1}	6.70×10^{4}	1.88×10^{-1}
482.8	300	1.032×10^{14}	845.26	23.80	1964	8.110×10	7.04×10^{-8}	6.95×10^{-11}	1.02×10^{-14}	8.71×10^{-14}	2.61×10^{88}	1.32×10^{8}	9.57×10^{8}	1.38×10^{-1}	2.15×10^{6}	6.13×10^{-9}
563.3	350	2.012×10^{14}	825.79	23.61	2119	9.030×10	2.75×10^{-8}	2.71×10^{-11}	3.68×10^{-185}	3.13×10^{-12}	9.46×10^{7}	1.38×10^{88}	2.64×10^{8}	5.21×10^{-8}	5.95×10^{6}	$2.32 \times 10^{* *}$
643,8	40	2.971×10^{14}	807.87	23.42	2272	9.974×10	1.18×10^{-8}	1.16×10^{-13}	1.46×10^{-18}	1.24×10^{-12}	3.78×10^{7}	1.43×10^{8}	6.62×10^{6}	2.16×10^{-2}	1.49×10^{7}	9.61×10^{-8}
724.2	450	3.907×10^{14}	788.80	23.24	2421	1.097×10^{2}	5.46×10^{-9}	5.39×10^{-12}	6.28×10^{-10}	5.34×10^{-13}	1.64×10^{7}	1.48×10^{8}	1.52×10^{7}	9.74×10^{-3}	3.43×10^{7}	4.33×10^{-3}
304.7	500	4.883×10^{14}	711.24	23.07	2566	1.198×10^{2}	2.71×10^{-8}	2.68×10^{-18}	2.93×10^{-18}	2.49×10^{-18}	7.70×10^{6}	1.53×10^{8}	3.25×10^{7}	4.72×10^{-3}	7.31×10^{7}	2.10×10^{-3}
965	600	6.593×10^{14}	737.83	22.72	2847	1.411×10^{8}	7.85×10^{-10}	7.75×10^{-18}	7.52×10^{-13}	6.39×10^{-14}	2.01×10^{8}	1.63×10^{8}	1.25×10^{8}	1.31×10^{-3}	2.80×10^{8}	5.81×10^{-4}
1127	700	8.288×10^{14}	706.54	22.39	3116	1.636×10^{8}	2.73×10^{-10}	2.70×10^{-18}	2.36×10^{-17}	2.00×10^{-14}	6.39×10^{8}	1.72×10^{8}	3.91×10^{8}	4.38×10^{-4}	8.81×10^{8}	1.95×10^{-4}
128\%	00	9.912×10^{44}	677.20	22.08	3374	1.875×10^{2}	1.09×10^{-10}	1.08×10^{-19}	8.60×10^{-18}	7.31×10^{-18}	$2.36 \times 10^{\text {s }}$	1, 80×10^{8}	1.06×10^{8}	1.70×10^{-4}	2.38×10^{8}	7.55×10^{-8}
1448	900	1.147×10^{15}	649.56	21.78	3622	2.126×10^{8}	4.89×10^{-23}	4.82×10^{-14}	3.53×10^{-14}	3.00×10^{-18}	9.85×10^{4}	1.87×10^{8}	2.54×10^{9}	7.38×10^{-5}	5.72×10^{9}	3.28×10^{-8}
16	1000	$1.2 \% \times 10^{18}$	623.77	21.49	3859	2.391×10^{2}	2.39×10^{-12}	2.36×10^{-14}	1.60×10^{-18}	1.36×10^{-38}	4.52×10^{4}	1.95×10^{8}	5.54×10^{8}	3.52×10^{-8}	1.25×10^{10}	1.56×10^{-8}
1931	1200	1.578×10^{18}	576.43	20.94	4307	2.964×10^{2}	7.14×10^{-12}	7.04 $\times 10^{-18}$	4.17×10^{-18}	3.54×10^{-18}	1.21×10^{4}	$2.08 \times 10^{\circ}$	2.07×10^{18}	1.01×10^{-8}	4.66 $\times 10^{10}$	4.47×10^{-8}
2253	1400	1.839×10^{18}	534.29	20.44	4720	3.591×10^{9}	2.66×10^{-18}	2.62×10^{-18}	1.39×10^{-12}	1.18×10^{-18}	4.10×10^{9}	2.21×10^{8}	6.11×10^{10}	3.62×10^{-8}	1.37×10^{11}	1.61×10^{-8}
24	15	1.962×10^{10}	514.93	20.20	4916	3.926×10^{2}	1.73×10^{-18}	1.71×10^{-18}	8.55×10^{-20}	7.26×10^{-17}	2.57×10^{3}	2.27×10^{8}	9.75×10^{10}	2.33×10^{-5}	2.19×10^{21}	1.03×10^{-6}
2816	1750	2.251×10^{18}	470.91	19.64	5375	4.828×10^{2}	6.90×10^{-19}	6.81×10^{-18}	3.03×10^{-20}	2.57×10^{-17}	9.36×10^{3}	2.40×10^{8}	2.67×10^{11}	9.00×10^{-7}	6.02×10^{11}	4.00×10^{-7}
3219	2000	2.515×10^{18}	432.30	19.13	5794	5.821×10^{2}	3.22×10^{-27}	3.18×10^{-18}	1.28×10^{-86}	1.08×10^{-17}	4.06×10^{2}	2.53×10^{8}	6.16×10^{11}	4.11×10^{-7}	1.39×10^{17}	1.83×10^{-7}
4023	2500	2.985×10^{18}	388.07	18.22	6540	7.684×10^{8}	9.96×10^{-14}	9.83×10^{-17}	3.34×10^{-81}	2.83×10^{-18}	1.11×10^{2}	2.76×10^{8}	2.25×10^{18}	1.22×10^{-7}	5.06×10^{18}	5.44×10^{-6}
4826	3000	3.388×10^{15}	317.26	17.42	7177	1.078×10^{3}	4.21×10^{-14}	4.16×10^{-17}	$1,23 \times 10^{-81}$	1.05×10^{-18}	4.27×10	2.95×10^{8}	5.85×10^{19}	5.04×10^{-8}	$\frac{1.32 \times 10^{18}}{}$	2.24×10^{-8}
6437	4000	4.037×10^{16}	242.75	16.18	8211	1.737×10^{2}	1.30×10^{-10}	1.28×10^{-17}	3.07×10^{-22}	2.61×10^{-19}	1.15×10	3.26×10^{6}	2.17×10^{15}	1.51 $\times 10^{-8}$	4.88×10^{17}	6.69×10^{-98}
804	50	4.544×10^{15}	191.73	15.20	9016	$2.570 \times 10^{*}$	6.08×10^{-18}	6.00×10^{-18}	1.23×10^{-38}	1.05×10^{-28}	4.91	3.54×10^{8}	5.10×10^{12}	6.94×10^{-8}	1.15×10^{14}	3.08×10^{-8}
9655	6000	4.949×10^{15}	155.25	14.41	9660	3.587×10^{8}	3.56×10^{-15}	3.52×10^{-18}	6.39×10^{-23}	5.42×10^{-80}	2.69	3.78×10^{8}	9.31×10^{13}	4.06×10^{-8}	2.10×10^{14}	1.80×10^{-9}
10.657	6522	5.163×10^{18}	137.58	14.00	10,000	4.313×10^{8}	2.83×10^{-18}	2.73×10^{-18}	4.77×10^{-25}	4.05×10^{-90}	2.00	$3.89 \times 10^{\text {E }}$	1.25×10^{24}	3.12×10^{-9}	2.82×10^{2}	1.39×10^{-9}

1 millibar $(\mathrm{mb})=10^{2}$ dymes $/ \mathrm{cn} \mathrm{m}^{2}=0,750 \mathrm{~mm}$ of Hg

Table 26
atmospheric model 1 - values of temperature, pressure, and density above the fa layer, based on $\boldsymbol{u}_{\boldsymbol{L}}=7$
Latitude 45°. Engineering Units. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.375 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Height		Potential$\stackrel{\phi}{\mathrm{ft}-1 \mathrm{~b}}$	Apparent Gravity $\stackrel{8}{\mathrm{fv} / \mathrm{sec}^{2}}$	Menn Mol Wt H	$\begin{gathered} \text { Temp } \\ { }^{T}{ }^{T}{ }^{2} \end{gathered}$	Seale Height H ft	Pressure $1 \mathrm{~b} / \mathrm{f} \mathrm{t}^{\text {Q }}$	Pressure Ratio p / p_{a}	Denaity slue/ $\mathrm{ft} \mathrm{t}^{2}$	Density Ratio ρ / ρ_{a}	MumberDensitynparticles $/ \mathrm{ft}^{3}$	$\left\lvert\, \begin{gathered} \text { Mean Parti- } \\ \text { cle Speed } \\ y \\ \mathrm{ft} / \mathrm{sec} \end{gathered}\right.$	d $=3 \times 10^{-6} \mathrm{~cm}$		d $=2 \times 10^{-8} \mathrm{~cm}$	
		Mean Free Psth L ft											Hean Colli-sion Freq$\nu$$1 /$ sec	Mean FreePathL.ft	Man Colli-sion Freq$z$$1 / \mathrm{sec}$	
mi	ft															
186.41	9.842×10^{8}		308	24.35	1980	1.378×10^{6}	1.01×10^{-9}	4.77×10	2.50×10^{-7}	1.05×10	$9.09 \times 10^{1:}$	3.21×10^{2}	$2.56 \times 10^{*}$		$\times 10^{7}$	1081
200	$1.056 \times 10^{\circ}$	2.098×10^{8}	29.117	24.25	2072	1.458×10^{5}	6.07×10^{-7}	2.87×10^{-10}	1.43×10^{-18}	6.02×10^{-1}	5.22×10^{13}	$3.29 \times 10^{\text {s }}$	$4.45 \times 10^{*}$	7.39×10^{-1}	$1.00 \times 10^{+}$	3.28×10^{-1}
225	1.188×10^{6}	5.922×10^{4}	28.769	24.07	2239	1.606×10^{8}	2.56×10^{-7}	1.21×10^{-1}	5.54×10^{-1}	2.33×10^{-11}	2.04×10^{28}	3.43×10^{9}	1.14×10^{4}	3.01×10^{-1}	$2.56 \times 10^{*}$	1.34×10^{-1}
250	1.320×10^{8}	9.700×10^{6}	28.427	23.89	2404	1.758×10^{8}	1.17×10^{-7}	5.53×10^{-1}	2.34×10^{-1}	9.85×10^{-2}	8.67×10^{18}	3.57×10^{4}	2.68×10^{4}	1.33×10^{-1}	6.03×10^{4}	5.92×10^{-1}
275	1.452×10^{6}	$1.343 \times 10^{*}$	28.091	23.71		1.915×10^{6}	5.68×10^{-8}	2.68×10^{-1}	1.06×10^{-1}	4.46×10^{-1}	3.68×10^{12}	3.70×10^{2}	5.87×10^{6}	6.30×10	1.32×10^{8}	2.80×10^{-8}
300	1.584×10^{6}	1.712×10^{7}		23.54	2728	2.074×10^{8}	2.93×10^{-8}	1.38×10^{-1}	5.09×10^{-1}	2.14×10^{-1}	1.91×10^{12}	3.83×10^{9}	1.22×10^{8}	3.15×10	2.74×10^{8}	1.40×10^{-8}
350	1.848×10^{5}	2.438×10^{7}	27.119	23.20	045	2.404×10^{8}	8.96×10^{-9}	4.23×10^{-18}	1.37×10^{-18}	5.77×10^{-12}	5.23×10^{12}	4.07×10^{8}	4.44×10^{5}	9.16×10^{-2}	1.00×10^{6}	4.07×10^{-3}
400	2.112×10^{6}	3.146×10^{7}	26.499	22.86	3354	2.750×10^{5}	3.21×10^{-9}	1.52×10^{-12}	4.40×10^{-12}	1.85×10^{-12}	1.70×10^{13}	4.31×10^{8}	1.37×10^{0}	3.15×10^{-8}	3.08×10^{6}	1.40×10^{-8}
450	2.376×10^{6}	3.838×10^{7}	25.900	22,53	3656	3.112×10^{6}	1.30×10^{-9}	6.14×10^{-13}	1.61×10^{-18}	6.78×10^{-1}	6.32×10^{10}	4.53×10^{7}	1.68×10^{8}	1.23×10^{-5}	8.28×10^{8}	5.47×10^{-4}
500	$2.640^{\times 1} \times 10^{\circ}$	4.515×10^{7}	25,320	22.21	3952	3.491×10^{5}	5.83×10^{-10}	2.75×10^{-13}	6.60×10^{-21}	2.78×10^{-1}	2.63×10^{10}	4.74×10^{8}	8.84×10^{6}	5.36×10^{-7}	1.99×10^{7}	2.38×10^{-4}
600	3.168×10^{6}	5,825 $\times 10^{7}$	24.219	21.59	4524	4.298×10^{5}	1.49×10^{-1}	7.04×10^{-1}	1.43×10^{-1}	6.02×10^{-1}	$5.86 \times 10^{*}$	5.15×10^{9}	3.97×10^{7}	1.30×10^{-4}	8.98×10^{7}	5.77×10^{-8}
700	$3.6 \% \times 10^{6}$	7.078×10^{7}	23.187	21.00	5072	5.174×10^{8}	4.85×10^{-1}	2.29×10^{-14}	4.04×10^{-18}	1.70×10^{-16}	$1.70 \times 10^{*}$	5.53×10^{3}	1.37×10^{8}	4.04×10	$3.08 \times 10^{*}$	1.80×10^{-6}
${ }^{800}$	$4.224 \times 10^{\circ} 8$	8.278×10^{7}	22.221	20.43	5596	6.123×10^{8}	1.90×10^{-1}	8.98×10^{-20}	1.40×10^{-16}	5.89 $\times 10^{-16}$	6.06×10^{8}	5.89×10^{3}	3.84×10^{8}	1.54×10	8.63×10^{2}	6.82×10^{-6}
900	4.752	9.430×10^{7}	21	19.89	6099	7.147×10^{8}	8.52×10^{-12}	4.03×10^{-18}	5.59×10^{-10}	2.35×10^{-18}	2.49×10^{8}	$6.23 \times 10^{*}$	9.30×10^{8}	6.7	2.09×10^{6}	2.98×10^{-6}
1000	5.280×10^{6}	1.053×10^{4}	20.460	9.37	6580	8.248×10^{8}	4.29×10^{-12}	2.03×10^{-18}	2.54×10^{-10}	1.07×10^{-20}	1.16×10^{8}	$6.56 \times 10^{*}$	2.00×10^{8}	3.24×10	4.51×10^{6}	1.44×10^{-6}
1200	6.336×10^{6}	1.262×10^{8}	18.901	18.38	7493	1.068×10^{6}	1.38×10^{-11}	6.52×10^{-10}	6.81×10^{-30}	2.87×10^{-1}	3.27×10^{7}	7.18×10^{8}	7.11×10^{6}	1.01×10^{-6}	1.60×10^{10}	4.49×10^{-7}
1400	7.392×10^{8}	1.454×10^{6}	17.513	17	83	$1.353 \times 10^{\circ}$	5.76×10^{-13}	2.72×10^{-16}	2.43×10^{-00}	1.02×10^{-1}	1.23×10^{7}	$7.77 \times 10^{*}$	1.89×10^{20}	4.11×10^{-7}	4.25×10^{10}	1.83×10^{-7}
1500	$20 \times$	545×10^{8}	16.876	17.04	8729	508×10^{6}	3.98×10^{13}	1.88×10^{-18}	1.56×10^{-80}	6.57×10^{-1}	$8.10 \times 10^{\circ}$	8.05×10^{3}	2.87×10^{10}	2.80×10^{-7}	6.46×10^{00}	1.25×10^{-7}
1750	9.240×10^{6}	1.759×10^{6}	15.428	16.03	9663	1.941×10^{6}	1.83×10^{-13}	8.65×10^{-17}	6.11 $\times 10^{-21}$	2.57×10^{-18}	3.37×10^{6}	8.73×10^{3}	6.90×10^{10}	1.27×10^{-1}	1.55×10^{11}	5.62×10^{-78}
2000	1.056×10^{7}]	1.954×10^{8}	14.158	15.11	10,515	$2.442 \times 10^{\circ}$	9.99×10^{-14}	4.72×10^{-17}	2.89×10^{-82}	1.22×10^{-14}	1.69×10^{6}	9.38×10^{2}	1.38×10^{13}	6.82×10^{-5}	3.09×10^{11}	3.03×10^{-8}
2500	1.320×10^{2}	2.300×10^{4}	12.049	13.47	12.027	$\frac{3.681 \times 10^{8}}{5}$	4.12×10^{-14}	$\frac{1.95 \times 10^{-17}}{10.95}$	9.29×10^{-12}	3.91×10^{-18}	6.10×10^{8}	1.06×10^{4}	3.81×10^{1}	2.78×10^{-8}	8.57×10^{1}	1.24×10^{-8}
3000	1.584×10^{7}	2.557×10^{6}	10.391	12.06	13,324	5.287×10^{9}	2.25×10^{-12}	1.06×10^{-1}	4.10×10^{-32}	1.73×10^{-10}	3.01×10^{8}	$1.18 \times 10^{*}$	7.72×10^{11}	1.53×10^{-8}	1.74×10^{1}	6.79×10^{-8}
35	1.848×10^{7}	2.854×10^{6}	9.0	10.85	14,446	7.318×10^{6}	1.47×10^{-14}	6.95×10^{-14}	2.22×10^{-82}	9.35×10^{-20}	1.81×10^{8}	1.30×10^{4}	1.28×10^{12}	1.01×10^{-8}	2.89×10^{12}	4.50×10^{-6}
4000	2.112×10^{7}	3.078×10^{8}	7.942	9.79	15,425	9.855×10^{6}	1.08×10^{-32}	5.10×10^{-11}	1.38×10^{-88}	5.81×10^{-30}	$\underline{1.25 \times 10^{8}}$	1.41×10^{4}	1.88×10^{12}	7.58×10^{-8}	4.18×10^{18}	3.37×10^{-8}
4500	2.376×10^{2}	3.276×10^{8}	7.037	8.85	16,290	$1.340 \times 10^{\circ}$	8.52×10^{-10}	4.03×10^{-18}	9.32×10^{-2}	3.92×10^{-20}	9.32×10^{4}	1.53×10^{4}	2.49×10^{19}	6.13×10^{-9}	5.61×10^{12}	2.73×10^{-8}
5000	2.640×10^{7}	3.452×10^{8}	6.280	8.02	17.059	1.683×10^{7}	7.12×10^{-14}	3.36×10^{-10}	6.74×10^{-88}	2.84×10^{-2}	7.44×10^{4}	1.64×10^{6}	3.12×10^{12}	5.25×10^{-6}	7.03×10^{2}	2.33×10^{-8}
5500	$2.904 \times 10^{7} 3.3$	3.609×10^{8}	5.642	7.28	17,744	2.146×10^{7}	6.19×10^{-16}	2.92×10^{-1}	5.11×10^{-88}	2.15×10^{-20}	6.21×10^{4}	1.76×10^{4}	3.74×10^{2}	4.70×10^{-1}	8.42×10	2.09×10^{-8}
5526	$\left.2.917 \times 10^{7}\right]$	3.668×10^{8}	5.402	7.00	18,000	2.365×10^{2}	5.78×10^{-16}	2.73×1	4.52×10^{-1}	$1.91 \times 10^{-}$	5.66×10^{4}	1.80×10^{4}	4.11×1	4.38×10^{-8}	9.24×10^{18}	1.95×10^{-8}

$1 \mathrm{lb} / \mathrm{ft}^{\mathrm{s}}=0.3591 \mathrm{~mm}$ of H_{8}

Latitude 45°. Metric Units. $p_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height h		ϕ ergs	$\left\lvert\, \begin{gathered} \text { Apparent } \\ \text { Gravity } \\ g^{2} \\ \mathrm{on}^{2} / \mathrm{sec}^{2} \end{gathered}\right.$	$\begin{gathered} \text { Mean } \\ \text { Mol Wr } \\ \# \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Temp } \\ \tau \\ \% \\ \hline \end{array}$	Scale Height B kna	Pressure $\stackrel{\rho}{\text { millibars }}$	Preasaire Ratio p / p_{a}	$\begin{gathered} \text { Density } \\ \rho \\ \mathrm{gaz} / \mathrm{cm}^{4} \end{gathered}$	Density Ratio$\stackrel{\sigma}{p / \rho_{a}}$	NumberDensitynparticles $/ \mathrm{cm}^{3}$	Mean Particle Speed $\mathrm{cm} / \mathrm{sec}$	d $\times 3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-5} \mathrm{~cm}$	
		Mean Free Path L con											Mean Colli- sion Freq y $1 /$ sec	MeanFree Path L cm	Mean Colli-sion Freq$y$$1 / \mathrm{sec}$	
km	mi															
300.0					1100			$4.77 \times 10^{-10} 1$			3.21×10^{0}	104	7.79×10^{4}			
321.	200	2.845	887	24.25	1151	4.443	$2.91 \times$	2.87×10	7.36×1	6.02	1.84×10^{8}	1.00×10^{8}	1.36×10^{0}	$7.39 \times$	3. 05×10^{8}	1
362.	225	8.080×10^{29}	876.88		1244	4.896	1.23×10^{-7}	$1.21 \times 10^{-}$	2.85×10^{-1}	2.33 \times	7.20×10^{40}	1.05×10^{3}	3.47×10^{8}	3.01×10	7.82×10	4×10^{-1}
402.3	250	1.315×10^{16}	866.45		1336	. 360	5.60×10^{-1}	5.53×10	1.21×10^{-1}	9.85×10^{-12}	3.06×10^{6}	1.09×10^{8}	8.17×10^{8}	1.33×10^{-1}	1.84×10^{0}	5.92×10^{-8}
	275	1.821×10^{14}			1426	5.836	2.72×10^{-4}	2.68	5.46	. 46×10^{-18}	1.40×10^{8}	1.13×10^{8}	1.79×10^{8}	6.30×10^{-8}	4.03×10^{6}	2.80×10^{-8}
482.8	300	2.321×10^{14}	846.19	23.54	1516	6.321×10	1.40×10^{-4}	1.38×10^{-1}	2.62×10^{-1}	2.14×10^{-12}	6.75×10^{2}	1.17×10^{8}	3.71×10^{8}	3.15×10^{-8}	8.35×10^{6}	. 40×10^{-2}
563.3	350	3.306×10^{14}	826.59	23.20	1692	7.328×10	4.29 $\times 10^{-8}$	4.23×10^{-1}	7.06×10^{-1}	5.77×10^{-3}	1.85×10^{7}	1.24×10^{8}	1.35×10^{7}	9.16×10^{-7}	3.05×10^{4}	. 07×10^{-5}
643.8	400	4.266×10^{14}	69	86	1863	8.384×10	1.54×10^{-9}	1.52×10^{-1}	$2.27 \times 10^{-}$. 85×10	6.00×10^{4}	1.31×10^{6}	4.17×10^{7}	3.15×10	9.38	1.40×10^{-3}
724.2	450	5.204×10^{14}	789.43	22.53	2031	9.487×10	6.23×10^{-1}	. 14×10	$8.29 \times$	6.78×10^{-1}	2.23×10^{6}	1.38×10^{8}	1.12×10^{4}	1.23	2.52×10^{4}	5.47×10^{-4}
804.7	500	6.122×10^{14}	771.75	22.21	9	1.064×10^{8}	2.79	$2.75 \times 10^{-}$	$3.40 \times$	2.78×10^{-1}	9.29×10^{8}	1.44×10^{8}	2.69×10^{2}	5.36×10^{-4}	6.06×10^{8}	2.38×10^{-4}
965.6	600	7.899×10^{14}	738.20	21.59	2513	$1.310 \times 10^{*}$	$14 \times$	$7.04 \times 10^{-\times 4}$	7.36×10^{-18}	6.02×10^{-16}	2.07×10^{8}	1.57×10^{6}	$1.21 \times 10^{\prime}$	1.30×10^{-4}	2.72×10^{8}	5.77×10^{-8}
1127	200	9.598×10^{16}	706.74	21.00	2818	1.577×10^{8}	. 32×10^{-11}	. 29×10^{-24}	2.08×10^{-13}	. 70×10^{-18}	6.00×10^{4}	1.69×10^{6}	4.17×10^{8}	4.04×10^{-8}	9.38×10^{8}	. 80×10^{-8}
1288	80	1.122×10^{18}				. 866×10^{2}	10×10^{-18}	. 98×10^{-1}	7.21×10^{-18}	$5.89 \times 10^{-}$	2.14×10^{4}	1.80×10^{8}	1.17×10^{10}	1.54×10^{-8}	2.63×10^{2}	6.82×10^{-0}
14	900	1.279	649.62	19.89	3398	2.178×10^{2}	408×10^{-1}	. 03×10	2.88×10	2.35×10^{-16}	8.79×10^{8}	1.90×10^{8}	2.83×10^{1}	6.70	6.38×10^{10}	2.98×10^{-6}
1609	1000	1.428×10^{18}	623.62	. 37	3656	2.514×10^{2}	2.05×10^{-18}	2.03×10^{-18}	1.31×10^{-19}	1.07×10^{-10}	4.10×10^{2}	2.00×10^{6}	6.11×10^{20}	3.24×10^{-8}	. 37×10^{11}	. 44×10^{-8}
1931	1200	1.711×10^{18}	576.10	3. 38	4163	$3.254 \times 10^{2} 6$	6.61×10^{-17}	6.52×10^{-18}	3.51×10^{-20}	$2.87 \times 10^{-}$	1.15×10^{2}	2.19×10^{8}	2.17×10^{21}	1.01×10^{-8}	4.87×10^{1}	4.49×10^{-7}
2253	1400	1.972×10^{28}	. 80	星	4628	4.123×10^{2}	2.76×10^{-18}	2.72×10^{-1}	1.25×10^{-20}	$1.02 \times 10^{-}$	4.34×10^{18}	2.37×10^{6}	5.76×10^{1}	4.11×10^{-7}	1.30×10^{12}	83×10^{-7}
2414	15	2.095×10^{48}	514.38	17.04	4849	4.596×10^{2}	1.91×10^{-12}	1.88×10^{-2}	8.03×10^{-32}	6.57×10^{-16}	2.86×10^{2}	$2.45 \times 10^{*}$	8.75×10^{1}	2.80×10^{-1}	1.97×10^{2}	. 25×10^{-7}
28	1750	2.385×10^{28}	470.25	16.03	5368	5.916×10^{2}	8.76×10^{-11}	8.65×10^{-1}	3.15×10^{-22}	2.57×10^{-10}	1.19×10^{2}	$2.66 \times 10^{\circ}$	2.10×10^{18}	$1.27 \times 10^{-}$	4.73×10^{2}	5.62×10^{-6}
3219	2000	2.650×10^{18}	431.54	15.11	42	7.442×10^{2}	4.78×10	$4.72 \times$	1.49×10^{-32}	1.22×10^{-1}	5.97×10	2.86×10^{4}	4.19×10^{1}	6.82×10^{-1}	9.43 $\times 10^{10}$	3.03×10^{-6}
4023	2500	3.119×10^{18}	367.25	13.47	6682	1.122×10^{2}	$1.97 \times 10^{\text {² }}$	1.95×10^{-17}	4.78×10^{-28}	3.91×10^{-19}	2.15×10	3.23×10^{8}	1.16×10^{14}	2.78×10^{-6}	2.61×10^{12}	1.24×10^{-8}
4828	3000	3.522×10^{18}	316.41	2.06	7402	$1.612 \times 10^{\text {d }}$	1.08×10^{-12}	1.06×10^{-17}	2.11×10^{-28}	1.73×10^{-10}	1.06×10	3.60×10^{8}	2.35×10^{18}	1.53×10^{-8}	5.30×10^{18}	6.79×10^{-8}
5633	3500	3.870×10^{10}	275.48	10.85	8026	2.231×10^{2}	7.04×10^{-16}	6.95×10^{-18}	1.14×10^{-28}	9.35×10^{-80}	6.39	3.96×10^{8}	3.91×10^{1}	1.01×10	8.81×10	4.50×10^{-1}
643	4000	$4.174 \times$	242.07	9.79	8569	3.004×10^{4}	5.17×10^{-16}	5.10×10^{-10}	7.11×10^{-28}	5.81×10^{-10}	41	4.30×10^{8}	5.57×10^{2}	$7.58 \times 10^{-}$	1.28×10^{2}	3.37×10^{-8}
724	450	4.442×10^{18}	214	8.85	9050	4.085×10^{4}	4.08×10^{-16}	4.03×10^{-10}	4.80×10^{-84}	3.92×10^{-2}	. 29	4.66×10^{9}	7.60×10^{18}	6.13×10	1.71×10^{14}	2.73×10^{-9}
8047	5000	4.681×10^{12}	191.	8.02	9477	5.129×10^{2}	3.41×10^{-10}	3.36×10^{-14}	3.47×10^{-85}	2.84×10^{-3}	2.63	$5.00 \times 10^{\text {e }}$	9.52×10^{18}	5.25×10^{-8}	2.14×10^{14}	2.33×10^{-8}
8852	5500	4.854×10^{28}	171.97	7.28	9858	6.541×10^{2}	$2.96 \times 10^{-}$	2.92×10	2.63×10^{-38}	$2.15 \times 10^{-}$	2. 19	5.36×10^{3}	1.14×10^{14}	4.70× 10^{-6}	2.57×10^{14}	2.09×10^{-2}
8990	5526	4.973×10^{10}	164.65	7.00	0,00	7.208×10^{4}	$2.78 \times 10^{-}$	2.73×10^{-1}	$2.34 \times 10^{-}$	$1.91 \times 10^{-}$	2.00	5.50×10^{8}	1.25×10^{14}	4.38.	2.82×10^{14}	1.95×10^{-8}

1 millibar $(\mathrm{mb})=10^{3}$ dynea $/ \mathrm{cm}^{*}=0.750 \mathrm{~mm}$ of $\mathrm{H8}$

FIG. 19

adopted values of temperature for atmospheric MODEL I FROM THE F_{2} LAYER UP TO 1600 KM . latitude $0^{\circ} .^{2}$ metrig units.

FIG. 20

FIG. 21

FIG. 22

ADOPTED VALUES OF TEMPERATURE FOR ATMOSPHERIC MODEL I FROM THE F_{2} LAYER UP TO 1000 MILES. LATITUDE 45°. ENGINEERING UNITS.

FIG. 23


```
ADOPTED VALUES OF TEMPERATURE FOR ATMOSPHERTC MODEL I FROM
THE F2 LAYER UP TO 1600 KM. LATITUDE 45'. METRIC UNITS.
```

FIG. 24

ADOPTED VALUES OF THE DENSITY RATIO σ FOR ATMOSPHERIC MODEL I FROM THE F_{2} - LAYER UP TO 1000 MLLES. LATITUDE 45 ENGINEERING UNITS.

FIG. 25

ADOPTED VALUES OF THE DENSITY RATIO σ FOR ATMOSPHERIC MODEL I FROM THE F_{2} LAYER UP TO 1600 KM . LATITUDE 45° METRIC UNITS.

FIG. 26

II-F. THE CALCULATIONS FOR
 ATMOSPHERIC MODEL II

There is no doubt that many objections may be raised concerning the use of atmospheric model I as a representation of conditions existing in the atmosphere, and it was originally conceived only as a means for extrapolating beyond the F_{2} layer up to heights of the order of 500 to 1000 miles. It may be more acceptable from many points of view to treat the atmosphere beginning somewhere above the F_{2} layer on the basis of the existence of a dynamical orbit region composed of particles moving essentially in free flight in a gravity field, as conceived by Bryan ${ }^{(55)}$ and Milne ${ }^{(56)}$. This concept, which was discussed to some extent in Section II-D, will be made the basis for atmospheric model II. Thus, according to this alternate concept designated as atmospheric model II, there will exist a certain height h_{*} situated somewhere above the F_{2} layer, where the mean free path becomes so large and the collision frequency so small that the gas particles may be considered to behave more or less as free bodies in a gravity field. A particle moving upward from h_{*} would find so few particles above it that if it had sufficient velocity [the escape velocity, Eq. (38)], it could escape from the earth entirely with tut little chance of having a collision with another particle. The height h_{*} will therefore be defined by the condition that there is but small probability of collision for a particle moving upward from this height with the escape velocity, that is, for a particle moving through the remainder of the atmosphere above h_{*}.

In model II it is assumed that the interstellar gas has no effect upon the atmosphere, and that the dynamical orbit region is isothermal. Reasons for assuming the isothermal property are given by Spitzer ${ }^{(61)}$, where it is pointed out that the kinetic energy (kinetic temperature) of a particle is increased whenever a molecule is dissociated by the absorption of radiation or whenever an atom is photo-ionized. Kinetic energy is lost by the reverse processes and also by inelastic collisions between electrons, atoms, and molecules. Since, by definition, there is little probability of collision in the dynamical orbit region, it is concluded that there can be no temperature change resulting from collisions. Also, by comparing the small time of flight of a particle in the dynamical orbit region with the large time interval required for radiation to affect the temperature, Spitzer concludes that radiation effects are unimportant, and that this region of the atmosphere must be isothermal. The main problem in the analysis of atmospheric model II is the determination of the height h_{*} at which the dynamical orbit, or free-flight region, may be supposed to begin ${ }^{\dagger}$, and the temperature T_{*} of this isothermal region.

In order to determine the height h_{*}, it is first necessary to specify the probability that an upward-moving atmospheric gas particle will have a collision in the course of its flight with some other such particle. The only criterion that we have here is that the collision probability must be small (compared to 1), but otherwise the choice is quite arbitrary. Let this probability be denoted by P. In a Maxwellian gas the collision rate or frequency ν, as determined by the relation

$$
\nu=\sqrt{2} \pi n v d^{2}
$$

[^10]may also be thought of as the probability per second that a particular particle will undergo a collision, and from this point of view could be called the collision probability per unit time (Ref. 57, pp. 99, 100, 113). Letting t be the time required for a particle moving upward from h_{*} to reach the top of its trajectory, which is assumed to be at a great distance (i.e., infinity), the probability P that the particle will undergo a collision in its upward travel may be expressed by
\[

$$
\begin{equation*}
P=\int_{0}^{t} \nu d t=\sqrt{2} \pi d^{2} \int_{0}^{t} n v d t=\sqrt{2} \pi d^{2} \int_{h}^{\infty} n d h \tag{52}
\end{equation*}
$$

\]

since $v=d h / d t$. Since n is the number of particles per cm^{3}, the integral is simply the total number of particles above the level h_{*} contained in a column of $1 \mathrm{~cm}^{2}$ cross section. Indicating this number by N_{*}, it follows that

$$
\begin{equation*}
N_{*}=\frac{P}{\sqrt{2} \pi d^{2}} \tag{53}
\end{equation*}
$$

Using in this region a mean value $d=2 \times 10^{-\theta} \mathrm{cm}$, which corresponds to a collision cross section $S=\pi d^{2}=12.6 \times 10^{-18} \mathrm{~cm}^{2}$, the values obtained for N_{*} are tabulated - below, Table 28, for several assumed values of the probability P.

Table 28

ATMOSPHERIC MODEL II. TOTAL NUMBER OF PARTICLES N_{*}
TO GIVE THE COLLISION PROBABILITY $p^{(1)}$.

P	$1 / 5$	$1 / 10$	$1 / 20$	$1 / 100$	$1 / 1000$
N_{*}	1.13×10^{14}	5.64×10^{13}	2.08×10^{13}	5.64×10^{12}	5.64×10^{11}

${ }^{(1)}$ Based on $d=2 \times 10^{-8} \mathrm{~cm}$.

Before proceeding further it is necessary to introduce the concept of the scaleheight H which was mentioned previously in connection with Eq. (1). This may be done by use of the Boltzmann distribution of particles in a gravitational field, see Eq. (42), or more directly by use of the hydrostatic equation $d p=-\rho g^{\prime} d h$. Using $\rho=n m$ and $p=n k T$, it follows from the hydrostatic equation that

$$
\begin{equation*}
\frac{d p}{p}=-\frac{m g^{\prime}}{k T} d h=-\frac{1}{H} d h, \tag{53a}
\end{equation*}
$$

where m is the mean particle mass and $H=\frac{k T}{m g^{\prime}}$. When m, T, and g^{\prime} may be considered to remain constant in a given interval of h and have, for example, the values m_{1}, T_{1}, and g_{1}^{\prime} appropriate to the initial height h_{1}, the equation may be integrated to give

$$
\begin{equation*}
p=p_{1} e^{-\frac{\left(h-h_{1}\right)}{H_{1}}} \tag{54}
\end{equation*}
$$

where $H_{1}=\frac{k T_{1}}{m_{1} g_{1}^{\prime}} \equiv \frac{R_{u} T_{1}}{M_{1} g_{1}^{\prime}}$. Since m_{1} and T_{1} are assumed to remain constant above the height h_{1}, it follows from (54) that

$$
\begin{equation*}
n=n_{1} e^{-\frac{\left(h-h_{1}\right)}{H_{1}}}, \text { and } \rho=\rho_{1} e^{-\frac{\left(h-h_{1}\right)}{H_{1}}} . \tag{55}
\end{equation*}
$$

To interpret the meaning of H_{1} it is pointed out that when $h-h_{1}=H_{1}$, it follows that

$$
p=\frac{p_{1}}{e^{2}} \quad \rho=\frac{\rho_{1}}{e}, \quad \text { and } n=\frac{n_{1}}{e}
$$

showing that in the distance H_{1} the atmospheric values decrease to $1 / e$ of their values at the height h_{1}. The total number of particles N_{1} above h_{1} contained in a column of unit cross section may be obtained from Eq. (55) by the integration

$$
\begin{gather*}
N_{1}=n_{1} \int_{h_{1}}^{\infty} e^{-\frac{\left(h-h_{1}\right)}{A_{1}}} d h, \text { or } \tag{56}\\
N_{1}=n_{1} H_{1} . \tag{57}
\end{gather*}
$$

The relation $N_{1}=n_{1} H_{1}$ points out a further interpretation of H_{1} as the distance to which the atmosphere would extend above the height h_{1} if the atmosphere in this region were homogeneous (i.e., constant temperature, density, and composition corresponding to the values at h_{1}).

Eqs. (55) and (56) were obtained by assuming a constant value of gravity ($g^{\prime}=$ $g_{1}^{\prime}=$ const.) even though in Eq. (56) the upper limit of integration extended to infinity. The question may be asked, how serious is the assumption of constant gravity as far as the determination of the value for h_{*} is concerned. Actually it would not be necessary to integrate to infinity in Eq. (56) or in Eq. (52), but only to an upper limit h_{u} such that most of the particles contained in a unit column would be included in the integration. Since the number density decreases approximately in a logarithmic fashion, this upper limit does not have to be so very large. This may be seen from the following considerations.

Since the kinetic temperature of the equatorial atmosphere at the height h_{*} will be of the order of $2000^{\circ} \mathrm{K}$, the mean speed of the particles at this height, Eq. (21), will be of the order of $v_{*}=1.5 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ (based on $M_{*}=20$). Accordingly, as far as the particles having the mean speed are concerned, it follows from the relation $\Delta v=\sqrt{2 g \Delta h}=1.5 \times 10^{5}$ that these particles would be able to rise only about 130 km above h_{*} before they are pulled back again by the action of gravity. Taking a speed of $3 \times 1.5 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$, which is certainly large enough to include practically all of the particles of a Maxwellian distribution at $2000^{\circ} \mathrm{K}$, it is found that particles having this speed at h_{*} are able to rise about 1200 km above h_{*}. Hence, for all practical purposes, instead of infinity, the value $h_{u}=h_{1}+1200 \mathrm{~km}$ could be used for the upper limit in (52) and (56). Over this range in height the variation in gravity is about 25 per cent, which is considered negligible in view of the approximate method used for the determination of h_{*}. Although it is possible to take the variation of gravity into account, by using the potential function as is done below in calculating the pressure, this refinement is hardly justified as far as the determination of h_{*} is concerned.

The relation (57) when used in conjunction with relation (53) makes it possible to determine the value of h_{*}. To do this it is necessary to have values for H and n for heights immediately above the F_{2} layer. These could be obtained, for example, by assuming constant temperature above the F_{2} layer, or by extrapolating the linear distribution of temperature existing in the F region. This represents two possible extremes. However, it is considered more satisfactory to use the results obtained for atmospheric model I in this region, since these values are intermediate between the two extreme possibilities mentioned. Using values for $h_{1}, M_{1}, T_{1}, g_{1}^{\prime}$, and n_{1} from Table 24 for the equatorial atmosphere, the values obtained for H_{1} and N_{1} are shown in Table 29; a plot of N_{1} as a function of h_{1} is given in Fig. 27 (p.92). Corresponding values for H_{1}, and N_{1}, at Latitude 45° are found in Table 3la (p.94).

The determination of h_{*} is based upon the fact that when the value of $N_{1}=f\left(h_{1}\right)$, Fig. 27, is equal to the value of N_{*} given by Eq. (53), see Table 28 , the condition is such that $h_{*}=h_{1}$, and h_{*} is thus determined from Fig. 27. Using Fig. 27 in this way ($h_{*}=h_{1}$ when $N_{1}=N_{*}$), the heights h_{*} corresponding to the different probabilities P have the values given in Table 30. Depending upon the value of P, it is seen that h_{*} may have values ranging from 800 to 1800 km . To specify h_{*} more definitely, it will be assumed that $P=1 / 10$ is a sufficiently small collision probability ${ }^{[5]}$ to satisfy the conditions for h_{*}, and the value $h_{*}=865 \mathrm{~km}$ (537 miles) is therefore adopted. Making use of Table 24, the conditions found at this height in the equatorial atmosphere are as given in Table 31. The value of g_{*}^{\prime} is derived on the basis that the atmosphere rotates with the earth as a solid up to the height h_{*}. It differs only slightly from the value g^{\prime} contained in Table 24.

It is worth noting that since the effective diameter d of the gas particles occurs to the second power in Eq. (53), the value derived for the height h_{*} will depend rather strongly upon the value used for d. If $d=3 \times 10^{-\theta} \mathrm{cm}$ were used, for example, the resulting value for h_{*} would be 980 for $P=1 / 10$. Thus an increase in d from 2×10^{-8} to $3 \times 10^{-8} \mathrm{~cm}$ causes an increase in h_{*} of about 100 km . It is apparent from Eq. (53) that as far as the determination of h_{*} is concerned, an increase in d (or the collision cross section S) has the same effect as a decrease in the collision

[^11]probability P. Accordingly, the value $h_{*}=865 \mathrm{~km}$ will remain unchanged for variations in P and d provided these variations are such as to give the constant value $1 / 10 / \pi \times 4 \times 10^{-1 \mathrm{e}}=7.97 \times 10^{1 \mathrm{~s}}$ for the ratio $P / \pi d^{2}$ or P / S, where S is the collision cross section.

Following the same procedure used for the equatorial atmosphere, the values for the atmosphere at latitude 45° are obtained as shown in Fig. 28 and Table 32. Corresponding to $P=1 / 10$, the value $h_{*}=630 \mathrm{~km}$ (391 miles) is adopted. Making use of Table 27, the atmospheric conditions given in Table 33 are found for the height h_{*} at latitude 45°.

Having decided upon an appropriate value for h_{*}, the calculation then proceeds on the basis of an isothermal atmosphere in static equilibrium. As pointed out in Section II-D, even in this outer (dynamic orbit) region of the atmosphere, if conditions are isothermal the density will be distributed according to the Boltzmann law, which gives a result identical with that of static equilibrium. Since variations in the acceleration of gravity and the centrifugal force will be taken into account in the calculation of the pressure, it will not be permissible to use the approximate formula (54) but rather the hydrostatic equation will be used in the form, Eq. (46),

$$
\begin{equation*}
d \log p=-\frac{M_{*}}{R_{u} T_{*}} d \phi \equiv-\frac{1}{H_{*} g_{*}} d \phi \tag{58}
\end{equation*}
$$

where $H_{*}=R_{u} T_{*} M_{*} g_{*}^{\prime}$ and where it is assumed that the composition and temperature remain constant above h_{*} with the values M_{*} and T_{*} respectively. Defining the potential function so that $\phi=0$ when $r=r_{*}$ the integration gives

$$
\begin{equation*}
p=p_{*} e^{-\frac{M_{*}}{R_{u} T_{*}} \phi} \equiv p_{*} e^{-\frac{\phi}{H_{*} g *}} . \tag{59}
\end{equation*}
$$

From Eq. (28) with $\phi=0$ when $r=r_{*}$, it follows that

$$
\begin{equation*}
\phi=g_{a} a^{2}\left(\frac{1}{r_{*}}-\frac{1}{r}\right)-\cos ^{2} \theta \int_{r_{*}}^{r} r \omega^{2}(r) d r . \tag{60}
\end{equation*}
$$

It will be assumed that the atmosphere out to the distance r_{*} rotates with the earth as a solid with angular velocity Ω. In the dynamic orbit region where the particles are considered to be more or less in free flight, they will move under the condition of constant angular momentum such that $r^{2} \omega(r)=$ constant. Since $r^{2} \omega=r_{*}{ }^{2} \Omega$ at the distance r_{*}, the angular velocity ω must satisfy the relation

$$
\begin{equation*}
\omega=\left(\frac{r_{*}}{r}\right)^{2} \Omega, \tag{61}
\end{equation*}
$$

which, when introduced into (60), results in the expression

$$
\begin{equation*}
\phi=g_{\mathrm{a}} a^{2}\left(\frac{1}{r_{*}}-\frac{1}{r}\right)-\frac{1}{2} r_{*}^{4} \Omega^{2}\left(\frac{1}{r_{*}{ }^{2}}-\frac{1}{r^{2}}\right) \cos ^{2} \theta \tag{62}
\end{equation*}
$$

For computing, it is more convenient to write this in the form

$$
\begin{equation*}
\phi=g_{a} \frac{a^{2}}{r_{*}} \frac{1}{\frac{r}{r_{*}}}\left(\frac{r}{r_{*}}-1\right)-\frac{1}{2} r_{*}^{2} \Omega^{2}\left[1-\left(\frac{r_{*}}{r}\right)^{2}\right] \cos ^{2} \theta \tag{63}
\end{equation*}
$$

Thus, the pressure is computed from Eq. (59), using ϕ as given by (63). The density is then computed as usual from the equation of state, (16). Using $h_{*}=865 \mathrm{~km}$ (537 miles) and the values of Table 31 for the equatorial atmosphere, and $h_{*}=630 \mathrm{~km}$ (391 miles) and the values of Table 33 for the atmosphere at latitude 45°, the computations give the results shown in Tables 34 to 37 .

It will be recalled that in determining the value for h_{*}, it was assumed that the conditions existing in the region between the F_{2} layer and the height h_{*} were those corresponding to atmospheric model I with $M_{L}=7$, Tables 24 and 27 . For completeness, the values in this range are repeated in Tables 34 to 37 . The variation of the density ratio σ from the height h_{*} up to 1000 miles is shown in Figs. 29 to 32.
∞

TOTAL NUMBER OF PARTICLES ABOVE THE HEIGHT h_{1} CONTAINED IN A COLUMN OF UNIT CROSS SECTION. LATITUDE 0°. ATMOSPHERIC MODEL II.

FIG. 27

TOTAL NUMBER OF PARTICLES ABOVE THE HEIGHT h_{1} CONTAINED IN A COLUMN OF UNIT CROSS SECTION. LATITUDE 45°. ATMOSPHERIC MODEL II.

ATMOSPHERIC MODEL II. LATITUDE 0°. total number of particles N_{1} above The height h_{1} CONTAINED IN A COLUMN OF $1 \mathrm{CM}^{2}$ CROSS SECTION.

$h_{1}, \mathrm{~km}$	400	483	563	644	724	805	966	1287
$H_{1}, \mathrm{~km}$	72.1	80.7	89.4	98.5	108.0	117.9	138.6	184.6
$n_{1}, 1 / \mathrm{cm}^{3}$	8.40×10^{8}	2.62×10^{8}	9.53×10^{7}	3.81×10^{7}	1.64×10^{7}	7.63×10^{6}	1.97×10^{6}	2.26×10^{5}
N_{1}	6.05×10^{15}	2.11×10^{15}	8.52×10^{14}	3.75×10^{14}	1.77×10^{14}	8.99×10^{13}	2.72×10^{13}	4.17×10^{12}

Table 30
ATMOSPHERIC MODEL II. LATITUDE 0°.
Values of the height h_{ϕ} as a function of the probability $p^{(1)}$.

P	$1 / 5$	$1 / 10$	$1 / 20$	$1 / 100$
N_{*}	1.13×10^{14}	5.64×10^{13}	2.82×10^{13}	5.64×10^{12}
h_{ϕ}, km	780	865	960	1225

${ }^{(1)}$ Based on Eq. (53), Fig. 27, and $d=2 \times 10^{-8} \mathrm{~cm}$.

ATMOSPHERIC MODEL II. LATITUDE C°.
Conditions at the height $h_{*}=865 \mathrm{~km}$ (537 miles).

g^{\prime}	M_{*}	T_{*}	p_{*}	p_{*}	n_{*}	L_{*}	v_{*}	ν_{*}
$757.2 \mathrm{~cm} / \mathrm{sec}^{2}$	22.42	$2563^{\circ} \mathrm{K}$	$1.18 \times 10^{-9} \mathrm{~mm}$ of Hg	$1.66 \times 10^{-16} \mathrm{gram} / \mathrm{cm}^{3}$	$4.48 \times 10^{6} 1 / \mathrm{cm}^{3}$	$2.23 \times 10^{8} \mathrm{~cm}$	$1.55 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$	$6.97 \times 10^{-4} 1 / \mathrm{sec}$
$24.84 \mathrm{ft} / \mathrm{sec}^{2}$	22.42	$4613^{\circ} \mathrm{H}$	$3.30 \times 10^{-9} \mathrm{lb} / \mathrm{ft}^{2}$	$3.23 \times 10^{-16} \mathrm{slug} / \mathrm{ft}^{3}$	$1.27 \times 10^{11} 1 / \mathrm{ft}^{3}$	$7.32 \times 10^{6} \mathrm{ft}$	$5.10^{\times 10^{3} \mathrm{ft} / \mathrm{sec}}$	$6.97 \times 10^{-4} 1 / \mathrm{sec}$

Table 31a
ATMOSPHERIC MODEL II. LATITUDE 45°.
TOTAL NUMBER OF PARTICLES N_{1} ABOVE THE HEIGHT h_{1} CONTAINED IN A
COLUMN OF $1 \mathrm{~cm}^{2}$ CROSS SECTION.

$h_{1}, \mathrm{~km}$	300	322	402	483	563	644	724	805	966	1127
$H_{1} \mathrm{~km}$	42.0	44.3	53.3	62.6	72.4	82.6	93.3	104.4	128.2	153.9
$n_{1}, 1 / \mathrm{cm}^{2}$	5.38×10^{8}	3.10×10^{9}	5.14×10^{8}	1.13×10^{8}	3.07×10^{7}	9.87×10^{6}	3.63×10^{6}	1.49×10^{8}	3.24×10^{5}	9.22×10^{4}
N_{1}	2.26×10^{18}	1.38×10^{18}	2.74×10^{18}	7.07×10^{14}	2.22×10^{14}	8.15×10^{13}	3.38×10^{13}	1.55×10^{13}	$4.16^{16} 10^{12}$	1.42×10^{12}

Table 32

ATMOSPHERIC MODEL II. LATITUDE 45°.
Values of height h_{*} as a function of the probability $p^{(1)}$.

P	$1 / 5$	$1 / 10$	$1 / 20$	$1 / 100$	$1 / 1000$
N_{*}	1.13×10^{14}	5.64×10^{13}	2.82×10^{13}	5.64×10^{12}	5.64×10^{11}
h_{π}, km	575	630	695	870	1220

${ }^{(1)}$ Based on Eq. (53), Fig. 28, and $d=2 \times 10^{-8} \mathrm{~cm}$.

Table 33
ATMOSPHERIC MODEL II. LATITUDE 45°.
Conditions at the height $h_{*}=630 \mathrm{~km}$ (391 miles).

$g^{\prime} *$	M_{*}	T_{*}	p_{*}	ρ_{*}	n_{*}	L_{*}	v_{*}	ν_{*}
$810.28 \mathrm{~cm} / \mathrm{sec}^{2}$	22.92	$1833^{\circ} \mathrm{K}$	$1.37 \times 10^{-9} \mathrm{~mm}$ of Hg	$2.75 \times 10^{-16} \mathrm{gram} / \mathrm{cm}^{3}$	$7.27 \times 10^{6} 1 / \mathrm{cm}^{3}$	$1.37 \times 10^{8} \mathrm{~cm}$	$1.30 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$	$9.46 \times 10^{-4} 1 / \mathrm{sec}$
$26.584 \mathrm{ft} / \mathrm{sec}^{2}$	22.92	$3299^{\circ} \mathrm{R}$	$3.82 \times 10^{-9} 1 \mathrm{~b} / \mathrm{ft}^{2}$	$5.34 \times 10^{-16} \mathrm{slug} / \mathrm{ft}^{3}$	$2.06 \times 10^{11} 1 / \mathrm{ft}^{3}$	$4.51 \times 10^{6} \mathrm{ft}$	$4.27 \times 10^{3} \mathrm{ft} / \mathrm{sec}$	$9.46 \times 10^{-4} 1 / \mathrm{sec}$

Table 34
atmospheric model il - values of temperature, pressure, and density above the fr layen
Latitude 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Height h			Apparent Gravity $\frac{\mathrm{ft}^{8} / \mathrm{sec}^{2}}{}$ Itse	Mean Mol wt n	$\begin{gathered} \mathrm{T} \times \mathrm{mq} \\ T \\ { }^{\circ} \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \text { ft } \\ \hline \hline \end{gathered}$	Pressure $1 \mathrm{~b} / \mathrm{ft} \mathrm{t}^{*}$	Pressure Patio p / p_{e}	Density slug/ft*	Denaity Ratio $c$$\rho / \rho_{0}$	Number Density n particles/ft ${ }^{*}$	Mean Perti- cle Speed ~v $\mathrm{ft} / \mathrm{sec}$	$d=3 \times 10^{-8} \mathrm{~cm}$		$d=2 \times 10^{-5} \mathrm{~cm}$		
		Path $\stackrel{L}{\mathrm{ft}}$											Mean Colli${ }_{\nu}{ }_{\nu}$ Fion $1 / \mathrm{sec}$	mean Free Path $\stackrel{L}{i t}$	Mean Collision Freq 1/aec		
248.6	1.312×10^{2}			393			2.362×10^{5}	4.33×10^{-7}	2.	6.46			4.13×10^{8}	$9.77 \times 10^{*}$	3×10^{-1}		
300	1.584×10^{6}		27.707	23.70	3498	2.646×10^{8}	1.46×10^{7}	6.90×10^{-11}	1.99×10^{-1}	8.71×10^{-1}	7.43×10^{12}	4.32×10^{8}	$3.13 \times 10^{*}$	4.38×10^{-1}	2.20×10^{4}	100 10^{-1}	
350	$1.848 \times 10^{\circ}$		27.064	23.42	3743	2.934×10^{5}	5.67×10^{-8}	2.68×10^{-11}	7.14×10^{-18}	3.12×10^{-12}	2.70×10^{28}	4.50×10^{2}	$8.61 \times 10^{*}$	5.03 $\times 10^{-3}$	1.94×10^{8}		
400	$2,112 \times 10^{6}$		26.444	23,14	3983	3.234×10^{8}	2.41×10^{-8}	1.14×10^{-12}	2.82×10^{-16}	1.23×10^{-17}	1.08×10^{12}	4.67×10^{8}	2.15×10^{8}	2.17×10^{-2}	4.84×10^{8}	10^{-3}	
450	$2.376 \times 10^{\circ}$		25.84	22.87	421	3.544×10^{5}	1.10×10^{-6}	5.20×10^{-18}	1.20×10^{-18}	5.25×10^{-14}	4.64×10^{11}	4.83×10^{8}	5.01×10^{8}	9.64×10^{-3}	$1.13 \times 10^{\circ}$	4.64×10^{-3}	
500	2.640×10^{6}		25.264	22.61	4	$3.867 \times 10^{\text {a }}$	5.40×10^{-8}	2.55×10^{-18}	5.53×10^{-18}	2.42×10^{-1}	2. 16×10^{11}	4.99×10^{2}	1.08×10^{6}	4.64×10^{-8}	$2.42 \times 10^{\circ}$	2.06×10^{-3}	
537	2.835×10^{6}	0.000	24	22.42	13	4.114×10^{8}	3.30×10^{-8}	1.56×10^{-18}	3.23×10^{-16}	1.41×10^{-13}	1.27×10^{12}	5.10×10^{8}	1.83×10^{6}	2.79×10^{-1}	4.12×10^{6}	1.24×10^{-3}	
550	$2.904 \times 10^{\circ}$	1.61×10^{6}	24.704	2.42	4613	4.137×10^{5}	2.82×10^{-8}	1.33×10^{-12}	2.76×10^{-16}	1.21×10^{-12}	1.09×10^{11}	5.10×10^{4}	$2.13 \times 10^{\circ}$	$2.39 \times 10^{-*}$	$4.80 \times 10^{\circ}$	1.06×10^{-8}	
600	$\frac{3,168 \times 10^{8}}{3}$	8.06×10^{6}	24,167	22.42	4613	4.229×10^{5}	1.50×10^{-8}	7.09×10^{-18}	1.47×10^{-10}	6.45×10^{-14}	5.80×10^{10}	5.10×10^{3}	4.01×10^{8}	1.27×10^{-3}	$9.02 \times 10^{\circ}$	5.66×10^{-4}	
650	3.432×10^{4}	1.44×10^{7}	23.648	22.42	4513	4.322×10^{8}	8.07×10^{-10}	3.82×10^{-23}	7.90×10^{-15}	3.46×10^{-14}	3.12×10^{18}	5.10×10^{2}	$7.45 \times 10^{\text {a }}$	6.85×10^{-4}	1.68×10^{7}	3.04×10^{-4}	
700	$3.696 \times 10^{\text {\% }}$	2.06×10^{7}	23.144	22.42	4613	4.416×10^{5}	4.40×10^{-10}	2.08×10^{-18}	4.30×10^{-17}	1.88×10^{-14}	1.70×10^{10}	5.10×10^{8}	1.37×10^{7}	3.73×10^{-4}	3.08×10^{7}	1.66×10^{-4}	
750	3.960×10^{4}	$\frac{2,66 \times 10^{7}}{3}$	22.657	$\frac{22.42}{20.4}$	4613	$4.511 \times 10^{\circ}$	$\frac{2.45 \times 10^{-10}}{107 \times 10^{-10}}$	1.16×10^{-13}	2.40×10^{-17}	$\frac{1.05 \times 10^{-14}}{50.80}$	9.47×10^{8}	5.10×10^{3}	2.45×10^{7}	2.08×10^{-4}	5.52×10^{7}	${ }^{1.68} 9 \times 10^{-8}$	
800	4.224×10^{4}	3.25×10^{7}	22.185	22.42	4513	$4.607 \times 10^{\circ}$	1.37×10^{-10}	6.48×10^{-14}	1.34×10^{-17}	5.86×10^{-10}	5.29×10^{0}	5.10×10^{3}	4.39×10^{7}	1.16×10^{-4}	9.89×10^{7}	5.16×10^{-6}	
900	4.752×10^{4}	4.40×10^{7}	${ }^{21.284}$	22.42	4613	4.802×10^{5}	4.46×10^{-11}	$2.11 \times 10^{-1 *}$	4.36×10^{-11}	1.91×10^{-18}	$1.72 \times 10^{\circ}$	5.10×10^{3}	$1.35 \times 10^{\text {8 }}$	3.77×10^{-8}	3.04×10^{2}	1.68×10^{-8}	
1000	5.280×10^{6}	5.50×10^{7}	20.437	22.42	4613	5.001×10^{8}	1.52×10^{-12}	7.19×10^{-18}	1.49×10^{-18}	6.52×10^{-18}	$\frac{5.88 \times 10^{*}}{}$	5.10×10^{3}	$3.95 \times 10^{\text {a }}$	1.29×10^{-8}	$8.90 \times 10^{\circ}$	5.73×10^{-9}	
1200	6.339×10^{6}	7.58×10^{7}	18.888	22.42	4613	5.411×10^{8}	1.99×10^{-12}	9.41×10^{-18}	1.95×10^{-18}	8.53×10^{-17}	7.70×10^{7}	$5.10 \times 10^{*}$	3.02×10^{8}	1.69×10^{-6}	6.79×10^{8}	7.51×10^{-7}	
1400	$7.392 \times 10^{\text {8 }}$	9.50×10^{2}	17.50	22.42	4613	5.838×10^{6}	3.03×10^{-18}	1.43×10^{-18}	$2.96 \times 10^{-8} 0$	1.29×10^{-17}	1.17×10^{7}	$5.10 \times 10^{*}$	1.99×10^{80}	2.57×10^{-7}	4.47×10^{10}	1.14×10^{-7}	
1500	$\frac{7.920 \times 10^{8}}{9.80 \times 10^{6}}$	$\frac{1.04 \times 10^{4}}{1.25}$	17.151	22.42	4613	$\frac{5.959 \times 10^{8}}{6.63 \times 10^{8}}$	$\frac{1.26 \times 10^{-13}}{1.61 \times 10^{-18}}$	$\frac{5.96 \times 10^{-17}}{7.61 \times 10^{-18}}$	$\frac{1.23 \times 10^{-90}}{159 \times 10^{-91}}$	$\frac{5.38 \times 10^{-8}}{691}$	4.85 $\times 10^{\circ}$	$5.10 \times 10^{*}$	$\frac{4.79 \times 10^{10}}{373 \times 10^{10}}$	1.05×10^{-7}	1.08×10^{12}	4.73×10^{-8}	
1750	9.240×10^{6}	1.25×10^{8}	15.433	22.42	4613	6.623×10^{8}	1.61×10^{-18}	7.61×10^{-18}	1.58×10^{-81}	6.91×10^{-18}	6.24×10^{5}	5.10×10^{8}	3.73× 10^{11}	1.37×10^{-1}	8.38×10^{11}	6.08×10^{-8}	
2000	1.056×10^{7}	1.45×10^{8}	14.169	22.42	4613	7.214×10^{8}	2.28×10^{-18}	1.08×10^{-18}	2.23×10^{-84}	9.75 $\times 10^{-1080}$	8.80×10^{4}	5.10×10^{9}	2.64×10^{28}	1.93×10^{-8}	5.94×10^{12}	8.58×10^{-20}	
2500	1.320×10^{7}	$\frac{1.79 \times 10^{8}}{}$	12,065	22.42	4613	$\frac{8.472 \times 10^{5}}{9}$	8.18×10^{-12}	$\frac{3.87 \times 10^{-80}}{206 \times 10^{-91}}$	$8,00 \times 10^{-84}$	$\frac{3.50 \times 10^{-* 1}}{1.80}$	3.16×10^{4}	$\frac{5.10 \times 10^{*}}{}$	7.36×10^{23}	6.93×10^{-11}	1.65×10^{14}	$\frac{3.08 \times 10^{-22}}{}$	
3000	1.584×10^{7}	2.09×10^{6}	10.397	22.42	4613	9.831×10^{5}	4.35×10^{-18}	2.06×10^{-91}	4.26×10^{-18}	1.86×10^{-98}	1.68×10^{2}	5.10×10^{8}	1.38×10^{28}	3.69×10^{-19}	3.11×10^{18}	$\frac{1.64 \times 10^{-23}}{1.85}$	
4000	2.112×10^{7}	2.569×10^{8}	7.953	22.42	4613	1.285×10^{8}	$4.01 \times 10^{-* 0}$	1.90×10^{-88}	3.92×10^{-87}	1.71×10^{-84}	1.55	5.10×10^{8}	1.50×10^{17}	3.40×10^{-16}	3.37×10^{17}	1.51×10^{-24}	
5000	2.640×10^{7}	2.943×10^{8}	6.279	22.42	4613	$\frac{1,628 \times 10^{4}}{2}$	1.03×10^{-82}	4.87×10^{-88}	1.01×10^{-28}	$\frac{4.36 \times 10^{-84}}{2,39 \times 10^{-84}}$	$\frac{3.99 \times 10^{-*}}{216 \times 1}$	5.10×10^{3}	5.83×10^{28}	0.75×10^{-16}	1.31×10^{18}	3.89×10^{-18}	
6000	3.168×10^{7}	3.241×10^{6}	5.084	22.42	4613	2.011×10^{5}	5.59×10^{-82}	2.63×10^{-81}	5.47×10^{-20}	$2.39 \times 10^{-* 7}$	2.16×10^{-8}	5.10×10^{3}	1.08×10^{49}	4.74×10^{-17}	2.42×10^{20}	2.11×10^{-17}	
7000	3.696×10^{7}	3.485×10^{8}	4.199	22.42	4613	2.435×10^{6}	5.14×10^{-24}	$2.43 \times 10^{-8,8}$	5.03×10^{-31}	2.20×10^{-38} $3.02 \times 10^{-4 *}$	1.99×10^{-6}	5.10×10^{8}	1.17×10^{21}	4.37×10^{-21}	2.63×10^{21}	1.94×10^{-18}	
8000	4.224×10^{7}	3.688×10^{81} 3.860 $\times 10^{1}$	3.527	22.42	4613	$2.898 \times 10^{\circ}$ 3.402 $\times 10^{6}$	7.05×10^{-88} 1.31×10^{-25}	3.33×10^{-20} 6.19×10^{-40}	6.90×10^{-80}	3.02 ${ }^{3} \times 10^{-x *}$	2.72×10^{-8}	5.10×10^{8}	8.55×10^{012}	5.97×10^{-16}	$1.92 \times 10^{* *}$	2.65×10^{-10}	
9000	4.752×1	$3.860 \times$	3.004	22.42	4613	$3.402 \times 10^{\text {a }}$	$1.31 \times 10^{-}$	$6.19 \times 10^{-* 9}$	1.28×10^{-38}	5.60×10^{-8}	5.05×10^{-8}	5.10×10^{3}	4.60×10^{28}	1.11×10^{-1}	$1.04 \times 10^{* *}$	$4.92 \times 10^{-}$	

$1 \mathrm{lb} / \mathrm{ft}^{*}=0.3591 \mathrm{~mm}$ of Hg

Table 35
atmospheric model il - values of temperature, pressure, and density above the fr layer
Latitude 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.178 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height		Potential $\stackrel{\Phi}{\phi}{ }_{\text {ergs }}$	$\begin{gathered} \text { Apparent } \\ \text { Grayity } \\ \text { I' }^{\prime} \\ \mathrm{cm} / \mathrm{sec} \end{gathered}$	Mol Wh M	$\begin{gathered} \text { Tengy } \\ T \\ { }^{2} \mathrm{~K} \\ \hline \end{gathered}$	Scale Height H bn		Pressure Fatio $p^{\prime} P_{a}$	Density a $\mathrm{gmo} / \mathrm{cm}^{2}$	Density Ratio p / p_{a}	NumberDensitynparticles $/ \mathrm{cm}^{3}$	Mean Particle Speed $\mathrm{cm} / \mathrm{sec}$	$1.3 \times 10^{-8} \mathrm{~cm}$		$d * 2 \times 10^{-6} \mathrm{~cm}$	
		Mean Free Path L cm											Mean Colli-sion Freq$\nu$$1 / \mathrm{sec}$	Mean Free Path E cra	Mean Colli- sion Freq ν $1 / \mathrm{sec}$	
km	mi															
									. 3.							
				23.70		8.066	6.99×10^{-8}	$6.90 \times$	$1.02 \times$	8.71×10^{-12}	2.62×10^{0}	1.32×10^{8}	9.54×10^{8}	1.38×10^{-1}	2.15×10^{8}	10^{-2}
563	350		. 92	23.42		8.941×10	2.72×10^{-8}	2.68×10^{-72}	3.68×10^{-15}	$3.12 \times 10^{-}$	9.54×10^{7}	1.37×10^{8}	2.62×10^{8}	5.03×10^{-2}	5.90×10^{8}	2.23×10^{-2}
644	400		6.0	3.14	22×3	9.856×10	1.15×10^{-8}	1.14×10^{-17}	1.45×10^{-18}	1.23×10^{-18}	3.81×10^{7}	1.42×10^{8}	6.56×10^{6}	2.17×10^{-2}	1.48×16^{7}	. 64×10^{-3}
724	450		787.71	22.87	2343	1.080×10^{2}	5.27×10^{-9}	5.20×10^{-12}	$6.18 \times 10^{-}$	$5.25 \times 10^{-}$	1.64×10^{7}	1.47×10^{6}	1.53×10^{7}	9.64×10^{-6}	3.44×10^{7}	4.28×10^{-8}
80	500		03	22.61	24	1.179×10^{2}	2.59×10^{-9}	2.55×10^{-10}	2.85×10^{-1}	$2.42 \times 10^{-}$	$7.63 \times$	1.52×10^{6}	3.28×10^{2}	4.64×10^{-3}	7.38×10^{7}	2.06×10^{-3}
885	537		757.34	22.42	2563	1.254×10^{2}	1.58×10^{-9}	1.56×10^{-18}	1.66×10^{-1}	1.41×10^{-1}	4.48×10^{6}	1.55×10^{8}	5.58×10^{2}	2.79×10^{-5}	1.26×10^{8}	1.24×10^{-8}
	550	$2.18 \times$				1.261×10^{2}	$1.35 \times$	$1.33 \times$. 42	1.21×10^{-13}	3.85×10^{6}	1.55×10^{8}	6.50×10^{7}	2.39×10^{-3}	1.46×10^{8}	1.06×10^{-3}
dra	600	1.09×10^{14}	736.62	22.42		$1.289 \times 10^{\text {d }}$	7.18×10^{-1}	. 09×10^{-13}	7.57×10^{-17}	6.43×10^{-1}	2.05×10^{8}	1.55×10^{6}	1.22×10^{8}	1.27×10^{-8}	2.75×10^{8}	$5.66 \times 10^{* *}$
1046	650	1.95×10^{14}	. 78	22.42		1.317×10^{7}	3.86×10^{-20}	3.82×10^{-19}	4.07×10^{-17}	3.46×10^{-1}	1.10×10^{6}	1.55×10^{6}	2.27×10^{6}	6.85×10^{-4}	5.11×10^{8}	3.04×10^{-4}
1127		2.79×10^{14}		22.42		1.346×10^{2}	2.11×10^{-1}	2.08×10^{-13}	2.21×10^{-1}	1.88	6.00×10^{8}	1.55×10^{8}	4.17×10^{8}	3.73×10^{-4}	$9.38 \times 10^{\text {B }}$	1.66×10^{-4}
1207	750	. 61×10^{14}		22.42		1.375×10^{2}	1.17×10^{-1}	1.16×10^{-13}	1.24×10^{-1}	. 05×10^{-1}	3.34×10^{8}	1.55×10^{6}	7.48×10^{8}	2.08×10^{-6}	$1.68 \times 10^{\circ}$	9.23×10^{-8}
1288	80	4.41×10^{14}	676.20	4	2563	1.404×10^{2}	6.56×10^{-12}	6.48×10^{-14}	6.90×10^{-120}	5.86×10^{-18}	1.87×10^{8}	1.55×10^{8}	1.34×10^{81}	1.16×10^{-4}	3.01×10^{9}	5.16×10^{-8}
1448	900	5.97×10^{4}	649.74	22.42	2563	1.464×10^{2}	2.14×10^{-11}	2.11×10^{-24}	2.25×10^{-10}	1.91×10^{-28}	6.07×10^{4}	1.55×10^{8}	4.12×10^{8}	3.77×10^{-8}	$9.27 \times 10^{\circ}$	1.68×10^{-8}
160	000	7.46×10^{44}	622.92	22.42	256	$1.524 \times 10^{*}$	7.28×10^{-32}	7.10×10^{-10}	7.67×10^{-10}	6.52×10^{-18}	2.08×10^{4}	1.55×10^{8}	1.21×10^{00}	1.29×10^{-5}	2.71×10^{10}	5.73×10^{-6}
19		1.03×10^{15}	53,	22.42	2563	1.649×10^{2}	9.53×10^{-1}	9.41×10^{-16}	1.00×10	8.53×10^{-1}	2.72×10^{8}	1.55×10^{8}	9.20×10^{10}	1.69×10^{-6}	2.07×10^{2}	7.51×10^{-7}
		$1.29 \times 10^{\text {18 }}$. 66	22.42	2563	1.779×10^{2}	1.45×10^{-13}	$1.43 \times 10^{-1.15}$	1.52×10^{-8}	1.29×10^{-1}	4.13×10^{4}	1.55×10^{8}	6.06×10^{11}	2.57×10^{-7}	1.36×10^{18}	1.14×10^{-1}
	1500	$\frac{1,41 \times 10^{18}}{18}$	2.77			16×10^{2}	6.03×10^{-1}	. 96×10^{-1}	$\frac{6.33 \times 10^{-81}}{14}$	5.38×10^{-18}	1.71×10^{2}	1.55×10^{8}	1.46×10^{12}	1.06×10^{-9}	3.29×10^{2}	4.73×10^{-9}
2816	750	$\underline{1.70 \times 10^{18}}$	0.39	22.42	2563	2.019×10^{2}	7.71×10^{-16}	7.61×10^{-18}	8.14×10^{-82}	6.91×10^{-18}	2.20×10	1.55×10^{8}	1.14×10^{19}	1.37×10^{-8}	2.55×10^{21}	6.08×10^{-9}
19	2000	1.97×10^{18}	431.86	22.42	2563	2.198×10^{2}	1.09×10^{-18}	1.08×10^{-18}	1.15×10^{-98}	9.75×10^{-20}	3.11	1.55×10^{8}	8.05×10^{18}	1.93×10^{-8}	1.81×10^{11}	8.58×10^{-10}
4023	2500	$\frac{2.43 \times 10^{18}}{2.8}$	367.73	22.42	2563	2.582×10^{2}	3.92×10^{147}	3.87×10^{-38}	$4.12 \times 10^{-4}{ }^{-4}$	3.50×10^{-21}	1.12×10^{-1}	1.55×10^{5}	2.24×10^{18}	$\frac{6,98 \times 10^{-21}}{}$	5.05×10^{18}	3.08×10^{-14}
4828	300	2.83×10^{15}	316.90	22.42	2563	2.996×10^{2}	2.06×10^{-15}	2.06×10^{-21}	2.19×10^{-388}	$1.85 \times 10^{-x 4}$	5.93×10^{-3}	1.55×10^{5}	4.22×10^{18}	3.69×10^{-18}	9.49×10^{16}	1.64×10^{-18}
6438	4000	3.48×10^{25}	24	22.42	2563	3.917×10^{2}	1.92×10^{-30}	1.50×10^{-3}	2.02×10^{-3}	1.71×10^{-84}	5.47×10^{-8}	1.55×10^{6}	4.57×10^{14}	3.40×10^{-1}	1.03×10^{20}	1.51×10^{-14}
8047	5000	3.99×10^{28}	19,40	22.42	2563	4.981×10^{2}	4.93×10^{-24}	4.87×10^{-2}	5.20×10^{-2}	4.46×10^{-2}	1.41×10^{-6}	1.55×10^{8}	$1.78 \times 10^{\circ 0}$	8.75×10^{-1}	4.00×10	3.89×10^{-10}
,	6000	4.39 $\times 10^{101}$	154.95	22.42	256	6.129×10^{2}	2.68×10^{-25}	2.63×10^{-16}	2.82×10^{-36}	2.39×10^{-9}	7.63×10^{-8}	1.55×10^{8}	3.28×10^{11}	4.74×10	$7.38 \times$	2.11×10^{-17}
11,266	7000	4.72×10^{16}	127.99	22.42	2563	7.422×10^{8}	2.46×10^{-84}	2.43×10^{-87}	2.59×10^{-31}	2.20×10^{-28}	7.03×10^{-8}	11.55×10^{8}	$3.56 \times 10^{* *}$	4.37 $\times 10^{-1}$	8.01×10^{18}	1.94×10^{-18}
12,875	8000	5.00×10^{29}	107.51	22.42	${ }_{2563}^{2563}$	8.833 $\times 10^{8}$	3,38 $\times 10^{-985}$	3.35 $\times 10^{-88}$	3.55×10^{-92} 6.59×10^{-32}	3.02 $\times 10^{-98}$	9.61×10^{-10} 1.78×10^{-10}	(1.55 $\times 1{ }^{\text {a }}$	2.60×10^{28}	(5.97×10^{-18}	$5.88 \times$	2.65×10^{-1}
14,49	9000	5.23	91.57	22.4		1.037	6.27	.19	. 59	5.6	1.78	1.55	1.40×10^{24}	1.11×10^{-18}	3.15×10^{94}	. $92 \times$

1 millibar (mb) $=10^{3} \mathrm{dymes} / \mathrm{cm}^{*}=0.750 \mathrm{~mm}$ of Hm

Table 36

atmospheric model il - Values of temperature, pressure, and density above the fa layer
Latitude 45°. Engineering Units. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.375 \times 10^{-\mathrm{a}} \mathrm{slug} / \mathrm{ft}^{3}$

Height		Potential$\stackrel{\phi}{\mathrm{ft}-1 \mathrm{~b}}$		Mexn Mol Wt	$\begin{gathered} \text { Temp } \\ T \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \text { Scale } \\ \text { Height } \\ H \\ \mathrm{ft} \end{gathered}$	ib/ft	Pressure Ratio p / p_{a}	Density slugh ft^{a}	Density Riatio p/pa	Number Density n particles/ $\mathrm{ft}{ }^{3}$	$\begin{array}{\|c} \text { Mean Parti- } \\ \text { cle Speed } \\ v \\ \mathrm{ft} / \mathrm{sec} \\ \hline \end{array}$	$d=3 \times 10^{-*} \mathrm{~cm}$		$d=2 \times 10^{-4} \mathrm{~cm}$	
		Mean Free Path L ft											Mean Colli-sion Freq$\nu$$1 / \mathrm{sec}$	Mean FreePsthLft	Mean Colli-sion Freq2$1 /$ sec	
mi	ft															
186.41	9.842×10^{8}		29.334	24.35	1980	1.377	1.01×10^{-6}	4.7	$2.50 \times 10^{-}$	1.05×10	${ }^{18}$	3.21×10^{2}		1.26	0^{*}	
20	1.056×10^{6}		29.141	24.2	207	1.457×10^{5}	6.07×10^{-7}	$2.87 \times 10^{-}$	1.43×10^{-18}	6.02×10^{-1}	5.22×10^{18}	3.29×10^{2}	$4.45 \times 10^{*}$	7.39×10^{-1}	1.00 $\times 10^{4}$	10^{-1}
225	1.188×10^{8}		28.793	. 08	2239	1.604×10^{85}	2.56×10^{-7}	1.21×10^{-10}	5.54×10^{-14}	2.33×10^{-11}	2.04×10^{13}	3.43×10^{-1}	1.14×10^{4}	3.01×10^{-1}	56× 6 10	0^{-1}
250	1.320×10^{6}		28.450	23.90	2404	1.756×10^{6}	1.17×10^{7}	5.53×10^{-11}	2.34×10^{-14}	9.85×10^{-1}	8.67×10^{18}	3.56×10^{3}	2.68×10^{4}	1.33×10^{-1}	6.03×10^{4}	5.90×10^{-2}
275	$1.452 \times 10^{\circ}$		28.113	23.73	2567	$1.888 \times 10^{\circ}$	5.68×10^{-1}	2.68×10^{-11}	1.06×10^{-14}	4.46×10^{-1}	$3.86 \times 10^{1 *}$	3.70×10^{4}	5.87×10^{6}	6.30×10^{-7}	1.32×10^{6}	2.80×10^{-2}
300	1.584×10^{6}		27.182	23.56	272	2.070×10^{8}	2.93×10^{-8}	1.38×10^{-11}	5.09×10^{-18}	2.14×10^{-82}	1.91×10^{27}	3.83×10^{8}	1.22×10^{8}	3.15×10^{-1}	2.76×10^{8}	1.40×10^{-2}
325	1.716×10^{8}		27.457	23.40	2887	2.226×10^{6}	1.46×10^{-6}	6.90×10^{-12}	2.04×10^{-18}	8.58×10^{-13}	7.87×10^{11}	3.95×10^{3}	2.95×10^{6}	2.34 $\times 10^{-9}$	6.65×10^{6}	5.94×10^{-3}
350	1.848×10^{6}		27.138	23.23	3045	2.399×10^{8}	8.96×10^{-8}	4.23×10^{-18}	1.37×10^{-16}	5.77×10^{-18}	5.23×10^{12}	4.07×10^{2}	4.44×10^{4}	9.16 $\times 10^{-2}$	1.00×10^{8}	4.07×10^{-9}
375	1.980×10^{6}		26.824	23.07	3201	2.570×10^{8}	5.46×10^{-9}	2.58×10^{-18}	7.64×10^{-1}	3.21×10^{-1}	2.95×10^{12}	4.19×10^{9}	7.88×10^{4}	5.32×10^{-3}	1.77×10^{0}	2.36×10^{-9}
391	2.064×10^{6}	0.000	26.626	22.92	329	2.685×10^{8}	3.82×10^{-0}	1.81×10^{-2}	5.34×10^{-1}	2.25×10^{-1}	2.06×10^{11}	4.27×10^{8}	1.13×10^{6}	3.78×10^{-1}	2.54×10^{6}	1.68×10^{-3}
400	2.112	1.204×10^{6}	26.517	22.92	3299	2.697×10^{6}	3.23×10^{-9}	1.53×10^{-12}	4.52×10^{-10}	1.90×10^{-1}	1.75×10^{28}	4.27×10^{7}	$1.33 \times 10^{*}$	$3.21 \times 10^{* *}$	2.99×10^{8}	1.4×10^{-8}
450	$2.376 \times 10^{\circ}$	$8.129 \times 10^{\circ}$	25.919	22.92	299	2.759×10^{5}	1.23×10^{-0}	5.81×10^{-13}	1.72×10^{-10}	7.24×10^{-54}	6.64×10^{10}	4.27×10^{3}	3.21×10^{6}	1.33×10^{-3}	$7.22 \times 10^{\circ}$	5.91×10^{-4}
475	2.508×10^{6}	1.153×10^{7}	25.628	22.92	329	2.790×10^{8}	7.62×10^{-16}	3.60×10^{-12}	1.07×10^{-16}	4.51×10^{-14}	4.13×10^{10}	4.27×10^{7}	5.63×10^{8}	7.59×10^{-4}	$1.27 \times 10^{\circ}$	3.37×10^{-4}
50	2.640×10^{6}	$1.489 \times 10^{+}$	25.342	22.92	3299	2.822×10^{8}	4.76×10^{-10}	2.25×10^{-13}	6.66×10^{-17}	2.80×10^{-14}	2.57×10^{10}	$4.27 \times 10^{\prime \prime}$	$9.05 \times 10^{\circ}$	4.72×10^{-4}	2.04×10^{7}	2.10×10^{-4}
550	$2.904 \times 10^{\circ}$	2.151×10^{7}	24.783	22.92	3299	$2.885 \times 10^{\circ}$	1.89×10^{-10}	8.93×10^{-14}	2.64×10^{-17}	1.11×10^{-14}	1.02×10^{10}	4.27×10^{3}	2.28×10^{7}	2.87×10^{-4}	5.13×10^{7}	1.28×10^{-4}
600	3.168×10^{6}	2.798×10^{7}	24.243	22.92	3299	2.945×10^{8}	7.63×10^{-12}	3.61×10^{-1}	1.07×10^{-1}	4.51×10^{-1}	$4.13 \times 10^{\circ}$	$4.27 \times 10^{\frac{8}{8}}$	5.63×10^{7}	7.59×10^{-7}	1.27×10^{8}	$\frac{1.37 \times 10^{-8}}{}$
700	3.69×10^{6}	4.051×10^{7}	23	22.92	3299	$3.076 \times 10^{\circ}$	1.32×10^{-11}	6.24×10^{-16}	1.85×10^{-18}	7.79×10^{-1}	$7.14 \times 10^{\prime \prime}$	4.27×10^{4}	$3.26 \times 10^{\circ}$	1.31×10^{-2}	7.33×10^{2}	5.83×10^{-8}
800	4.224×10^{6}	5.251×10^{7}	22.250	22.92	29	3.214×10^{6}	2.47×10^{-18}	1.17×10^{-15}	3.45×10^{-19}	1.45×10^{-10}	1.33×10^{81}	$4.27 \times 10^{\circ}$	$1.75 \times 10^{\circ}$	2.44×10^{-0}	$3.93 \times 10^{\circ}$	1.09×10^{-5}
900	4.752×10^{6}	6.401×10^{7}	21.345	22.92	3299	3.350×10^{6}	4.95×10^{-13}	2.34×10^{-10}	6.92×10^{-80}	2.91×10^{-17}	2.67×10^{7}	4.27×10^{2}	$8.71 \times 10^{\circ}$	4.90×10^{-3}	1.98×10^{10}	2.18×10^{-7}
1000	5.280×10^{6}	7.505×10^{7}	20.493	22.92	3299	3.489×10^{5}	1.05×10^{-18}	4.96×10^{-17}	1.47×10^{-30}	6.19×10^{-18}	5.68×10^{8}	4.27×10^{3}	4.09×10^{10}	1.04×10^{-7}	9.21×10^{10}	4.64×10^{-8}
1200	6.336×10^{6}	9.586×10^{7}	18.223	22.92	3299	$3.924 \times 10^{\text {b }}$	5.75×10^{-10}	2.72×10^{-18}	8.04×10^{-28}	3.39×10^{-10}	3.10×10^{8}	4.27×10^{8}	7.50×10^{11}	5.69×10^{-6}	$1.69 \times 10^{1 *}$	$2.53 \times 10^{-*}$
1400	7.392×10^{6}	1.151×10^{8}	17.551	22.92	32	4.074×10^{6}	3.90×10^{-10}	1.84×10^{-10}	5.45×10^{-25}	2.29×10^{-2}	$2.10 \times 10^{+}$	4.27×10^{3}	1.11×10^{18}	3.86×10^{-1}	2.49×10^{15}	$\frac{1.71 \times 10^{-10}}{}$
1500	$7.920 \times 10^{\circ}$	$1.242 \times 10^{\text {a }}$	16.914	2.92	329	4.227×10^{8}	1.09×10^{-18}	5.15×10^{-20}	1.52×10^{-38}	6.40×10^{081}	$5.87 \times 10^{\circ}$	4.27×10^{81}	3.96×10^{10}	1.08×10^{-10}	8.91×10^{12}	4.79×10^{-12}
1750	$9.240 \times 10^{\circ}$	$1.456 \times 10^{\text {a }}$	15.466	22.92	3299	4. 623×10^{8}	5.48×10^{-18}	2.59×10^{-81}	7.66×10^{-38}	$\frac{3.23 \times 10^{-18}}{211 \times 10^{-83}}$	$\frac{2.96 \times 10^{4}}{1.3510}$	4.27×10^{8}	7.85×10^{14}	$5.44 \times 10^{-1 *}$	1.77×10^{15}	2.42×10^{-18}
2000	1.056×10^{7}	1.651×10^{6}	14.197	22.92	3299	5.037×10^{5}	3.58×10^{-16}	1.69×10^{-32}	5.01×10^{-20}	2.11×10^{-83}	1.93×10	4.27×10^{4}	1.20×10^{16}	3.55×10^{-12}	2.71×10^{10}	1.58×10^{-18}
2500	$1.320 \times 10^{*}$	$1.997 \times 10^{*}$	12.085	22.92	3299	5.917×10^{6}	2.84×10^{-22}	1.34×10^{-34}	3.97×10^{-31}	$1.67 \times 10^{-* 5}$	1.53×10^{-1}	4.27×10^{3}	1.52×10^{10}	2.81×10^{-18}	$3.42 \times 10^{* *}$	1.25×10^{-18}
3000	$1.584 \times$	$2.293 \times 10^{\text {a }}$	10,412	22.92	3299	6.867×10^{6}	4.52×10^{-29}	2.14×10^{-34}	6.32×10^{-40}	2.66×10^{-37}	2.44×10^{3}	4.27×10^{8}	9.53×10^{29}	4.48×10^{-17}	2.14×10^{80}	1.99×10^{-18}
3500	1.848×10^{7}	2.550×10^{8}	9.064	22.92	329	7.889×10^{6}	1.24×10^{-84}	5.86×10^{-3}	1.73×10^{-31}	7.28×10^{-28}	6.68×10^{-8}	14.27×10^{8}	3.48×10^{31}	1.23×10^{-1}	7.83×10^{31}	5.45 $\times 10^{-18}$
4000	2.112×10^{7}	2.774×10^{8}	7.961	22.92	3299	8.981×10^{6}	5.41×10^{-88}	2.56×10^{-30}	7.57×10^{-32}	3.19×10^{-36}	2.92×10^{-8}	4.27×10^{4}	7.96×10^{28}	5.36×10^{-12}	1.79×10^{8}	2.36×10^{-18}
4500	2.376×10^{7}	2.972×10^{4}	7.049	22.92	329	1.014×10^{6}	$3.39 \times 10^{-\pi \%}$	1.60×10^{-30}	4.74×10^{-34}	2.00×10^{-13}	1.83×10^{-7}	4.27×10^{8}	1.27×10^{24}	3.36×10^{-31}	2.86×10^{9}	1.49×10^{-21}
5000	2.640×10^{2}	3.147×10^{8}	6.284	22.92	3299	1.138×10^{6}	2.94×10^{-88}	$1.39 \times 10^{-3 x}$	4.11×10^{-90}	1.73×10^{-33}	1.59×10^{-6}	4.27×10^{3}	1.46×10^{23}	2.92×10^{-89}	3.29×10^{86}	1.30×10^{-21}
5500	2.904×10^{7}	3.304×10^{8}	5.638	22.92	329	$\left[1.268 \times 10^{6}\right.$	3.27×10^{-2}	1.55×10^{-7}	4.57×10	$1.92 \times 10^{\circ}$	1.76×10^{-6}	$4.27 \times 10^{*}$	1.32×10^{28}	3.23×10^{-30}	2.97×10^{20}	1.44×10^{-37}

$1 \mathrm{lb} / \mathrm{ft}^{2}=0.359 \mathrm{~lm}$ of Hg

ATMOSPHERIC MODEL II. - VALUES OF TEMPERATURE, PRESSURE, AND DENSITY ABOVE THE F ${ }_{2}$ LAYER
Latitude 45° Metric Units. $p_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height h		Potential ϕ ergs	Apparent Gravity g^{*}	$\begin{array}{\|c\|} M_{01} w_{t} \\ \\ \hline \end{array}$	$\begin{gathered} \text { Temp } \\ T \\ { }^{2} \mathrm{~K} . \\ \hline \end{gathered}$	Scale Height h km		Pressure Ratio p / p_{a}	Density $\stackrel{\rho}{\mathrm{gm} / \mathrm{cm}^{*}}$	Density Ratio ρ / ρ_{0}	NumberDensitynparticles $/ \mathrm{cm}^{3}$	Mean Particle Speed $\mathrm{cm} / \mathrm{sec}$	$d=3 \times 10^{-6} \mathrm{~cm}$		$t=2 \times 10^{-8} \mathrm{~cm}$	
		Mean Free Path L $c \mathrm{~cm}$											$\begin{gathered} \text { Mean Colliz } \\ \text { sion Freq } \\ z \text { rec } \\ 1 / \mathrm{sec} \end{gathered}$	Mean FreePathLcm	Mean Colli-sion Freq$\nu$$1 /$ sec	
km	mi															
				24.35	1100	4.197×10		4.77×10^{-10}				$10^{4} 7$			10^{8}	5.58×10^{-1}
	200				1151	$4.439 \times$	2.91×10^{-7}	$2.87 \times$. 36	6.02	1.84×10^{8}	$1.00 \times 10^{\text {8 }}$	1.36×10^{6}	7.39×10^{-1}	3.05×10^{8}	3.28×10^{-8}
362	225		. 60			-	1.23×10^{-7}	1.21×10	, 8.5	2.33×10^{-11}	$7.20 \times 10^{\text {B }}$	1.05×10^{6}	47×10^{6}	3.01×10^{-1}	. 81×10^{8}	10^{-4}
402	250		67.15	23.89	1336	$5,353 \times 10$	5.60×10^{-8}	5.53×10^{-1}	1.21×10^{-14}	9.85×10^{-1}	3.06×10^{8}	1.09×10^{8}	8.17×10^{6}	1.33×10^{-1}	1.84×10^{6}	5.90×10^{-2}
443	275		856.89	23.	142	5.755	2.72×10^{-8}	2.68	5.46	4.46	$1.40 \times 10^{*}$	1.13	. 79×10^{8}	6.30×10^{-1}	4.03×10^{8}	2.80×10^{-2}
483	300		846.81	23.5	15	6.311×10	1.40×10^{-8}	1.38×10^{-1}	2.62×10^{-10}	2.14×10^{-12}	6.75×10^{7}	1.17×10^{0}	3.71×10^{8}	3.15×10^{-1}	8.35×10^{8}	1.60×10^{-2}
523	32		. 0	23.38	1604	6.786×10	7.00×10^{-8}	6.90×10^{-10}	1.05×10^{-10}	8.58×10^{-17}	2.78×10^{7}	$1.21 \times 10^{8} 9$	9.00×10^{8}	1.34×10^{-8}	2.03×10^{7}	5.94×10^{-3}
	350			23.20	16	$7.313 \times$	4.29×10^{-4}	$4.23 \times 10^{-}$	7.06	$5.77 \times$	1.85×10^{7}	1.24×10^{8}	1.35×10^{7}	9.16×10^{-3}	3.05×10^{7}	4.07×10^{-3}
604	375		817.60	23.04	1779	832×10	2.61×10^{-9}	$2.58 \times 10^{-1} 1$	3.93×10^{-10}	3.21×10^{-12}	1.04×10^{7}	1.28×10^{5}	2.40×10^{7}	5.32×10^{-3}	5.40×10^{7}	2.36×10^{-3}
630	391		811.57	22.92	833	. 185×10	1.83×10^{-8}	1.81×10^{-12}	2.75×10^{-18}	2.25×10^{-18}	7.27×10^{6}	1.30×10^{6}	3.44×10^{7}	3.78×10^{-3}	$7.74 \times 10^{+}$	1.68×10^{-3}
64	400	$1.633 \times$	808.22	22.92	1833	8.219×10	1.55×10^{-2}	1.53×10^{-12}	2.33×10^{-10}	1.90×10^{-1}	6.18×10^{6}	1.3	4.05×10^{7}	3.21×10^{-8}	9.11×10^{7}	1.43×10^{-1}
724	450	1.102×10^{14}	, 01	22.92	1833	8.409×10	5.89×10^{-10}	5.81×10^{-18}	8.86×10^{-17}	2.24×10^{-1}	2.34×10^{8}	1.30×10^{8}	9.79×10^{7}	1.33×10^{-3}	2.20×10^{8}	5.91×10^{-4}
765	47	1.563×10^{14}	. 14	22.92		. 504×10	3.65×10^{-10}	3.60×10^{-18}	5.51×10^{-17}	4.51×10^{-14}	$1.46 \times 10^{\circ}$	1.30×10^{8}	1.72×10^{8}	7.59×10^{-4}	3.86×10^{9}	3.37×10^{-6}
80	500	2.019×10^{14}	772.42	22.92	1833	600	2.28	2.25 \%	3.43×10^{-1}	$2.80 \times$	$9.08 \times 10^{\circ}$	1.30×10^{5}	2.76×10^{6}	4.72×10^{-6}	6.20×10^{3}	2.10×10^{-4}
885	550	2.917×10^{14}	755.40	22.92	1833	. 794×10	9.05×10^{-12}	8.93×10^{-1}	1.36×10^{-1}	1.11×10^{-14}	3.60×10^{5}	$1.30 \times 10^{5} 6$	6.95×10^{8}	2.87×10^{-4}	1.56×10^{2}	1.28×10^{-4}
966	600	3.794×10^{14}	738.94	22.92	183	8.975×10	3.65×10^{-12}	3.61×10^{-29}	5.51×10^{-18}	4.51×10^{-18}	1.46×10^{8}	1.30×10^{8}	1.72×10^{8}	7.59×10^{-8}	$3.86 \times 10^{\circ}$	3.37×10^{-3}
112	700	5.493×10^{14}	5	22.9	1833	9.375×10	6.32×10^{-12}	6.24×10^{-10}	9.53×10^{-12}	7.79×10^{-18}	2.52×10^{4}	1.30×10^{8}	$9.92 \times 10^{\circ}$	1.31×10^{-8}	2.23×10^{10}	5.83×10^{-0}
1288	800	7.120×10^{14}	678.19		1833	9.795×10	1.18×10^{-12}	1.17×10^{-18}	1.78×10^{-18}	1.45×10^{-10}	4.70×10^{3}	$1.30 \times 10^{5} 5$	5.33×10^{10}	2.44×10^{-8}	1.19×10^{2}	1.09×10^{-3}
1448	900	8.680×10^{14}	650.59			1.021×10^{2}	2.33×10^{-17}	2.34×10^{-26}	3.56 $\times 10^{-80}$	2.91×10^{-1}	9.43×10^{2}	1.30×10^{8}	2.65×10^{12}	4.90×10^{-7}	5.93×10^{2}	2.18×10^{-7}
160	100	1.018×10^{10}	624.64	22.92	183	1.063×10^{2}	$5.03 \times$	4.96×10^{-1}	7.57×10^{-2}	6.19×10^{-1}	2.01×10^{2}	$1.30 \times 10^{*}$	1.25×10^{12}	1.04×10^{-7}	2.79×10^{1}	4.64×10^{-9}
1931	1200	1.300×10^{18}	555.43	22.92	1833	. 196×10^{2}	2.75×10^{-15}	2.72×10^{-18}	4.14 $\times 10^{-98}$	3.39×10^{-10}	1.09×10	1.30×10^{5}	2.29×10^{11}	5.69×10^{-9}	5.11×10^{10}	$\frac{2.53 \times 10^{-8}}{170}$
2253	1400	1.561×10^{18}	534.95	22.92	1833	1.242×10^{2}	1.87×10^{-16}	1.84×10^{-18}	2.81×10^{-32}	2.29×10^{-10}	7.42×10^{-1}	$1.30 \times 10^{5} 5$	3.37×10^{19}	3.86×10^{-1}	7.54×10^{1}	1.71×10^{-10}
2414	150	1.684×10^{18}	515.54	22.92	183	1.289×10^{2}	$5.22^{+} \times 10^{-17}$	5.15×10^{-20}	7.83×10^{-24}	6.40×10^{-81}	2.07×10^{-1}	$1,30 \times 10^{\text {b }}$	$1,21 \times 10^{18}$	1.08×10^{-1}	2.70×10^{2}	4.79×10^{-11}
2816	1750	974 $\times 11^{10^{18}}$	471.41	22,92	1833	1.409×10^{4}	2.62×10^{-18}	2.59×10^{-21}	3.94×10^{-88}	3.23×10^{-28}	1.05×10^{-2}	1.30×10^{5}	2.39×10^{18}	5.44×10^{-1}	5.35×10^{18}	2.42×10^{-18}
3219	20	2.239×10^{18}	432.72	22.	1833	1.535×10^{10}	1.71×10^{-18}	1.69×10^{-82}	2.58×10^{-28}	2.11×10^{-23}	6.82×10^{-4}	1.30×10^{8}	3.67×10^{17}	3.55×10^{-1}	8.20×10^{11}	1.58×10^{-18}
4023	2500	2.708×10^{26}		22.92	183	1.803×10^{8}	1.36×10^{-2}	$1.34 \times 10^{-3 *}$	2.04×10^{-24}	1.67×10^{-80}	5.40×10^{-8}	1.30×10^{8}	4.63×10^{10}	2.81×10^{-1}	1.03×10^{2}	1.25×10^{-10}
4828	3000	3.109×10^{10}	317.36	2.92		2.093×10^{10}	2.16×10^{-2}	2.14×10^{-86}	3.25×10^{-90}	2.66×10^{-81}	8.62×10^{-8}	1.30×10^{5}	2,90 1.10^{92}	$4.48 \times 10^{-}$	6.49×10^{21}	1.99×10^{-17}
5633	3500	3.458×10^{18}	276.27	22.92	1833	2.404×10^{2}	5.94×10^{-30}	5.86×10^{-98}	8.91×10^{-22}	7.28×10^{-38}	2.36×10^{-6}	1.30×10^{6}	1.06×10^{23}	1.23×10^{-1}	2.37×10^{22}	5.45×10^{-18}
643	400	3.762×10^{18}	242.66	22.92	1833	2.737×10^{2}	2.59×10^{-28}	2.56×10^{-38}	3.90×10^{-38}	3.19×10^{-86}	1.03×10^{-1}	1.30×10^{5}	2.43×10^{94}	5.36×10^{-18}	5.42×10^{2}	2.38×10^{-17}
7242	450	4.030×10^{18}	214.84	22.92	1833	$3,092 \times 10^{9}$	$\frac{1.62 \times 10^{-27}}{14 \times 10^{-22}}$	1.60×10^{-20}	2.44×10^{-34}	2.00×10^{-81}	6.96×10^{-19}	1.30×10^{8}	3.87×10^{28}	3.36×10^{-3}	8.65×10^{2}	1.49×10^{-31}
8047	5	4.267×10^{16}	191.54	22.92	33	3.468×10^{8}	1.41×10^{-87}	1.39×10^{-91}	2.12×10^{-38}	1.73×10^{-88}	5.62×10^{-19}	1.30×10^{8}	4.46×10^{98}	2.92×10^{-32}	9.95×10^{20}	1.30×10^{-32}
8851	5500	480×10	171	22.92	1833	. 866×10^{2}	1.57×10	1.55×10^{-7}	$2.35 \times 10^{-}$	$1.92 \times 10^{-}$	6.22×10	1.30×10^{5}	4.03×10^{72}	3.23×10^{-2}	8.99×10^{2}	1.44×10^{-29}

1 milliber (mb) $=10^{3}$ dynes $/ \mathrm{cm}^{2}=0.750$ mw of H_{8}

FIG. 29

ADOPTED VALUES OF THE DENSITY RATIO σ FOR ATMOSPHERIG
MODEL II FROM h_{*} UP TO 1000 MILES. LATITUDE 0°. METRIG UNITS.
FIG. 30

FIG. 31

ADOPTED VALUES OF THE DENSITY RATIO σ FOR ATMOSPHERIC MODEL II FROM h_{*} UP TO 1000 MILES. LATITUDE 45°. METRIC UNITS.

FIG. 32

III. THE ATMOSPHERE ABOVE THE F_{2} LAYER ATMOSPHERIC MODEL III

In atmospheric model I the atmospheric gas was treated as a continuum with no account taken of the motion of the individual particles, even though at sufficiently great heights the gas becomes attenuated to a degree comparable to that of the interstellar gas. In this model the degree of diffusion equilibrium was automatically specified by the assumed law of variation of M with height (Eq.36) and by the value used for the constant M_{L} (see Section II-E). The vertical temperature distribution was specified by the assumption of thermal equilibrium with the interstellar gas (at $10,000^{\circ} \mathrm{K}$) at the "limit" of the atmosphere, where both gases have the same pressure.

In model II it is recognized that above the F_{2} layer, beginning at some height h_{*}, the mean free path becomes so large that the atmospheric gas particles begin to move over paths which are essentially dynamical orbits in a gravitational field, subject to the dynamical condition of constant angular momentum. Thus, model II is characterized by the concept of a dynamical orbit region above the height h_{*} where individual particles are rising and falling over large vertical distances, and where any particle having a sufficiently high velocity - the escape velocity, Eq. (38) - would have a probability of escaping from the earth entirely. Using the particle velocity $4.5 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ mentioned on p .89 , it is found that the time of vertical flight of such a particle in a gravitational field is of the order of 15 minutes. Since this time interval can be shown to be negligibly small compared with that required for ionization by solar radiation, it is permissible to assume that the total energy of each particle remains unchanged during its flight in the dynamical orbit region. It then follows from the discussion on p .63 that the atmosphere above the height h_{*} will be isothermal, will have a Maxwellian velocity distribution, and will have a vertical density distribution given by the Boltzmann law - Eq. (41). If, in addition, there is no appreciable increase in the degree of ionization of the atmosphere between the F_{2} layer and the height h_{*}, it follows that the particles situated above h_{*} will also be predominantly neutral. In model II no account was taken of diffusion equilibrium (composition and temperature were assumed constant), and the temperatures used in establishing the height h_{*} were taken from model I.

In model III an attempt will be made to combine the idea of an isothermal dynamical orbit region - used in model II - with the effects of diffusion equilibrium, treating the latter on a more rational basis than was employed for model I. Further consideration will be given to the temperature above the F_{2} layer and, in particular, to the temperature T_{*} of the dynamical orbit region and the height h_{*} where it may be considered to begin.

The atmosphere above 300 km has been studied recently by L. Spitzer, Jr. (61), who uses the term "exosphere" to denote the free-flight dynamical orbit region above the height h_{*}. Among other things, Spitzer has derived certain theoretical results concerning the height h_{*} and the temperature T_{*}, and these results will be used in connection with model III. In view of the rather complete lack of information and theoretical results concerning the temperatures which might exist above the F_{2} layer, Spitzer's analysis will be presented below in detail ${ }^{[5 a]}$.

III-A. THE MAXIMUM TEMPERATURE OF THE UPPER ATMOSPHERE (EXOSPHERE)

It will be recalled that in model II the highest temperature attained in the upper atmosphere was the constant value T_{*} at and above the height h_{*}, and that this temperature was derived from the temperature distribution of model I. Spitzer ${ }^{(81)}$ has considered the maximum possible temperature that might be expected throughout the atmosphere at and above the level h_{*} on the basis of a simplified analysis of the ionizing absorption of ultra-violet radiation by oxygen atoms and the electron excitation of neutral oxygen atoms. His analysis is based upon a consideration of the oxygen atom, and in particular upon the fact that the oxygen atom has an excited ${ }^{1} D_{2}$ state corresponding to an excitation potential of 1.96 electron volts (ev) above the ground state ${ }^{(82)}$, (83). Thus an electron with more than 1.96 ev of kinetic energy can, by collision, excite an oxygen atom to the ${ }^{1} D_{2}$ state.

That excited states of the oxygen atom are present in the upper atmosphere is fully attested by the analysis of the spectrum of the light of the night sky ${ }^{(64),(64 a),}$ (64b), (64c). Why the temperature analysis is based on the excited ${ }^{1} D_{2}$ state of the oxygen atom rather than on some other excited state of oxygen, or on an excited state of nitrogen, is explained by Spitzer ${ }^{(67)}$ in the following remarks:
"Since the overwhelming majority of atoms in the upper atmosphere will be in the ground level, collisional excitations from the ground level will have the largest effect on the temperature. Most excited states have such high energy that no electrons in the upper atmosphere would be moving fast enough to excite them; hence it is the lowest excited state, or level, which has the greatest influence. For example, the lowest excited level of the oxygen atom is the ${ }^{1} D_{2}$ state, which lies 1.96 volts above the ground level. An electron can excite an atom to this level only if it has an energy greater than 1.96 volts. The existence of this level reduces the temperature until the number of electrons with energies above this critical value will be fairly small. The next higher excited level is the ${ }^{1} S_{0}$ level; this level lies 4.17 volts above the ground level and the number of

[^12]electrons capable of exciting to this state an atom originally in the ground level will be negligibly small at any temperature which seems likely for the upper atmosphere.
"Nitrogen atoms should also be considered in this connection, of course. The first excited state of nitrogen lies 2.37 volts above the ground level. Since the number of electrons with energies greater than 2.37 volts is much less than the corresponding number with energies greater than 1.96 volts, nitrogen atoms will not be so effective in depressing the temperature as oxygen atoms will be.
"Two other mechanisms should also be considered in this connection. The excited
levels of the nitrogen molecule lie considerably closer to the ground level than
do the excited atomic states. If there is any appreciable number of nitrogen
molecules at great heights, these may have an important effect on the tempera-
ture. Also, the oxygen negative ion should be considered. Detachment of an
electron from such an ion, resulting from absorption of a quantum of radiation,
will tend to increase the temperature, while detachment of an electron by
collision with another electron will tend to decrease the temperature. Prelimi-
nary calculations show that neither of these effects can change appreciably the
conclusions reached ${ }^{(81)}$ on the basis of the neutral oxygen atom."

The analysis is based upon the consideration that the loss in free electron kinetic energy resulting from the excitation collision process is replenished in equal amount by the process of photo-ionization. In order to proceed with the analysis, it is necessary to know the collision cross section corresponding to the excitation process. This collision cross section may be expressed as a fraction q of the geometrical cross section $\pi d^{2} / 4$ of a rigid sphere of diameter d. For this purpose Spitzer uses the value $q=1 / 5$ based on the results of Hebb and Menzel ${ }^{(\theta 5)}$ for the OIII ion (i.e., the doubly ionized oxygen atom, 0^{++}). The energy density of the excitation collision process will be proportional to the collision frequency of the electrons with the oxygen atoms, and to the free electron kinetic energy given up in the excitational collisions producing the excited ${ }^{1} D_{2}$ state of the oxygen atoms. The general theory of the motion of electrons in a gas when inelastic (excitation) collisions are possible is very complicated ${ }^{\left(8 \sigma^{\circ}\right)}$, and since Spitzer's analysis is intended only as a rough, first approximation, several simplifying assumptions are used. If $E_{i}=m_{e} v_{i}^{2} / 2\left(v_{i}=\right.$ electron velocity corresponding to kinetic energy $\left.E_{i}\right)$ denotes the energy level of the excited ${ }^{1} D_{2}$ state of the oxygen atom, all electrons with kinetic energy E greater than E_{i} (velocity greater than v_{i}) can, by collision, excite the atom to the ${ }^{1} D_{2}$ level. It is therefore necessary, first of all, to estimate the number of electron-oxygen collisions per cm^{3} per sec for the electrons with velocity greater than v_{i}. Letting ν_{e} denote the electron-oxygen collision frequency considering only the electrons with velocity greater than v_{i}, and assuming a Maxwellian distribution for both gases, it is found (Ref. 65a, p.92) that

$$
\begin{equation*}
\nu_{e O}=\sqrt{\frac{2}{\pi}} n_{e} n_{0} S_{e O}\left(\frac{m_{e}}{k T}\right)^{\frac{3}{2}} \int_{v_{i}}^{\infty} e^{-m_{e} v^{2} / 2 k T} d v \tag{64}
\end{equation*}
$$

where

$$
\begin{aligned}
n_{e} & =\text { number of free electrons per } \mathrm{cm}^{3} \\
n_{0} & =\text { number of oxygen atoms per } \mathrm{cm}^{3} \\
m_{e} & =\text { mass of electron } \\
m_{0} & =\text { mass of oxygen atom } \\
S_{e O} & =\text { collision cross section for electron and oxygen atom }=q \times \frac{\pi d^{2}}{4} \\
k & =\text { Boltzmann's constant } \\
v & =\text { electron velocity. }
\end{aligned}
$$

Owing to the small mass of the electron, it is assumed in deriving (64) that the ratio $m_{e^{\prime}}^{1 / m_{0}}$ is negligible compared to 1 , and also that the velocity of the atoms is negligible relative to the electron velocity.

Eq. (64) can be integrated (Ref. 65a, p.92) yielding the result

$$
\begin{equation*}
\nu_{e \mathrm{O}}=\frac{2}{\sqrt{\pi}} n_{e} n_{0} S_{e 0}\left(\frac{2 k T}{m_{e}}\right)^{\frac{1}{2}}\left[\left(\frac{m_{e}}{2 k T}\right)^{2}+1\right] e^{-\frac{E_{i}}{k T}} \tag{64a}
\end{equation*}
$$

where $E_{i}=m_{e} v_{i}^{2} / 2$. The term $\left(m_{e} / 2 k T\right)^{2}$ is very small compared to l and may be neglected. Using the relation ${ }^{(65 b)}$ between the temperature and the average electron velocity v_{e}, the term $\left(2 k T / m_{e}\right)^{1 / 2}$ may be replaced by $\sqrt{\pi} v_{e} / 2$, and the collision frequency equation becomes

$$
\begin{equation*}
\nu_{e 0}=n_{e} n_{0} S_{e 0} v_{e} e^{-\frac{E_{i}}{k T}} \tag{64b}
\end{equation*}
$$

It is assumed as a rough approximation that every collision of an electron having kinetic energy greater than E_{i} is an excitation collision, although actually there exists only a certain probability that these collisions will be excitational ${ }^{\left(65^{c}\right)}$. On the basis of this assumption, each electron-oxygen collision, (64b), represents a loss $E_{i}\left(=1.96\right.$ electron volts for the ${ }^{1} D_{2}$ state) of free electron kinetic energy. Replacing the collision cross section by $S_{e O}=1 / 5 \times \pi d^{2} / 4$, where d is the diameter of the oxygen atom, and letting $P=\exp \left(-E_{i} / k T\right)$, the total loss in free electron kinetic energy is $1.96 n_{e} n_{0} \pi d^{2} v_{e} P / 20$ electron volts per cm^{3} per sec. The quantity P may be written

$$
\begin{equation*}
P=e^{-\frac{E_{i}}{k T}}=10^{-1.96 \times \frac{5040}{T}}=10^{-1.96 \theta}, \tag{65}
\end{equation*}
$$

where $\theta=5040 / T$ with T in degrees Kelvin.
For thermodynamic equilibrium the loss in free electron kinetic energy resulting from the excitational collision prócess with the neutral oxygen atoms must be balanced by a gain in free electron kinetic energy brought about by photo-ionization resulting from the absorption of ultra-violet solar radiation. The photo-ionization of the atoms is governed by the photoelectric equation(60)

$$
\begin{equation*}
\frac{1}{2} m_{e} v_{e}^{2}=h \nu-e V_{i}, \tag{66}
\end{equation*}
$$

where

$$
\begin{aligned}
1 / 2 m_{e} v_{e}^{2} & =\text { the kinetic energy with which the photoelectron is ejected } \\
h & =\text { Planck's constant } \\
\nu & =\text { the frequency of the ionizing radiation } \\
e & =\text { the electronic charge } \\
V_{i} & =\text { the ionization potential. }
\end{aligned}
$$

Thus the excess kinetic energy of the photoelectron depends upon the frequency of the photo-ionizing radiation. A knowledge of this excess energy is essential for the analysis. Spitzer obtains an average value of one electron volt for the excess photoelectron kinetic energy on the basis of the following argument ${ }^{(67)}$.
"Although the excess kinetic energy depends on the frequencies of the photoionizing radiation, the average energy carried off by photoelectrons tends to be proportional to the temperature of the surface which produces the ionizing radiation, quite independently of how weak this radiation may be. An analysis of this effect has been given by Eddington ${ }^{\dagger}$. The color temperature radiation from the sun at the high frequencies of interest is somewhat uncertain. Radiation from a black body at $5000^{\circ} \mathrm{K}$ would yield photoelectrons with an average kinetic energy of about 0.3 of an electron volt. The actual energy will depend on the detailed slope shown by the curve of radiation intensity as a function of frequency. On the assumption that the radiation in the ultra-violet corresponds to a higher temperature than in the visible region of the spectrum, one volt is taken as the average kinetic energy of the photoelectrons. A more precise estimate would be difficult to obtain, and would depend both on the variation of the photoelectric absorption of oxygen with increasing frequency, and also on the detailed radiation from the sun in the ultra-violet ${ }^{[\theta]}$. Similar considerations would also apply to the nitrogen atom. If the ionizing radiation from the sun at the appropriate frequencies corresponds to that of a black body at about $10,000^{\circ} \mathrm{K}$, the excess kinetic energy of the photoelectron will again be about 1 volt. It should be noted that this excess kinetic energy depends not upon the absolute intensity of the radiation but upon the variation of this intensity with frequency. As long as this frequency variation corresponds to that of a black body at temperature T, the ejected electrons will tend to have an average kinetic energy corresponding to a kinetic temperature $2 / 3 \mathrm{~T}$."

If μ is the probability of ionization per unit time, the number of photoelectrons released per cm^{3} per second is μn_{0}; and since each electron is released in the ionization process with a kinetic energy of about lelectron volt, μn_{0} also gives the gain in energy per cm^{3} per second. For equilibrium conditions this gain in energy

[^13]from ionization must be balanced by the loss in free electron kinetic energy which occurs in the excitational collision process with the oxygen atoms. The energy balance is therefore represented by
\[

$$
\begin{gather*}
\mu n_{0}=1.96 \frac{\pi d^{2}}{20} \quad n_{e} n_{0} v_{e} P=1.96 \frac{\pi d^{2}}{20} n_{e} n_{0} v_{e} 10^{-1.96 \theta}, \text { or } \\
10^{1.96} \theta=1.96 \frac{\pi d^{2}}{20} \frac{n_{e}}{\mu} v_{e} . \tag{67}
\end{gather*}
$$
\]

Since 1 electron volt $=1.6 \times 10^{-12} \mathrm{ergs}, v_{e}$ has a value of about $6 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$. Using $d=2 \times 10^{-8} \mathrm{~cm}$ for the diameter of the neutral oxygen atom, Eq. (67) may be written

$$
\begin{equation*}
10^{1.88} \theta=7.4 \times 10^{-9} \frac{n_{e}}{\mu} \tag{68}
\end{equation*}
$$

Since, for steady state conditions, the electron density n_{e} is related to the recombination coefficient α and the ionization probability μ by the equation (Ref. 59, p.98)

$$
\begin{equation*}
n_{e}=\left(\frac{n_{0} \mu}{a}\right)^{1 / 2} \tag{69}
\end{equation*}
$$

the energy balance equation, (68), may be written

$$
\begin{equation*}
10^{1.98 \theta}=7.4 \times 10^{-9}\left(\frac{n_{0}}{a \mu}\right)^{1 / 2} \tag{70}
\end{equation*}
$$

It now remains to evaluate a and μ. In the absence of any information concerning these quantities in the atmosphere above the F_{2} layer, Spitzer assumes the values are approximately the same as in the F_{2} layer. The values of n_{e} and a for the F_{2} layer as given by Bates and Massey ${ }^{(88)}$ are:

$$
\text { maximum electron density } n_{e}=1.0 \times 10^{6} \text { per } \mathrm{cm}^{3} \text { (day), } 2.5 \times 10^{5} \text { per } \mathrm{cm}^{3} \text { (night). }
$$

recombination coefficient $a=8 \times 10^{-11} \mathrm{~cm}^{3} / \mathrm{sec}$ (day), $3 \times 10^{-10} \mathrm{~cm}^{3} / \mathrm{sec}$ (night).
On the basis of these figures the mean values $n_{e}=6 \times 10^{5}$ per cm^{3} and $a=2 \times 10^{-10}$ $\mathrm{cm}^{3} / \mathrm{sec}$ will be used. The corresponding value for μ may be obtained from (69),

$$
\begin{equation*}
\mu=a \frac{n_{e}^{2}}{n_{0}} \tag{71}
\end{equation*}
$$

Using $n=3 \times 10^{9}$ per cm^{3} for the total number density in the F_{2} layer (i.e., per latitude 45°, Table 14), and assuming that the composition in this layer is $22 \% \mathrm{O}$ by mass (corresponding to $33 \% \mathrm{O}$ and $67 \% \mathrm{~N}_{2}$ by volume), it is found that for the F_{2} layer

$$
\begin{equation*}
n_{0}=\frac{0.22 \times 3 \times 10^{9} \times m_{1} \times 24}{m_{1} \times 16}=1 \times 10^{9} \text { per } \mathrm{cm}^{3} \tag{71a}
\end{equation*}
$$

where m_{1} is the mass of an atom of unit atomic weight ($\left.m_{1}=1.6489 \times 10^{-24} \mathrm{gram}\right)$ and where $M^{1}=24$ is used as the mean molecular weight in the F_{2} layer. On the basis of the values above it is found from (71) that

$$
\mu=2 \times 10^{-10} \frac{36 \times 10^{10}}{1 \times 10^{9}}=7 \times 10^{-8} \text { per second, }
$$

and Eq. (70) becomes $10^{1.9 \theta} \theta=2 n_{0}^{X_{2}}$, or

$$
\begin{equation*}
T=\frac{9878}{0.301+0.5 \log _{10} n_{0}},{ }^{\circ} \mathrm{K} \tag{72}
\end{equation*}
$$

This is the expression which results for the temperature of the isothermal exosphere, or free flight region, when the value $d=2 \times 10^{-8} \mathrm{~cm}$ is used [7].

If the percentage composition by mass is the same at the height of the base of the exosphere, h_{*}, as in the F_{2} layer - i.e., $n_{0}=0.22 n_{*}, M_{*}=24$ - the temperature T_{*} at the base of the exosphere is determined by

$$
\begin{equation*}
T_{*}=\frac{9878}{0.5 \log _{10} 0.22 n_{*}+0.301}=\frac{19756}{\log _{10} n_{*}-0.056} \tag{73}
\end{equation*}
$$

Replacing n_{*} in terms of T_{*} by means of relation (79) derived below, this may be written

$$
\begin{equation*}
T_{*}=\frac{19756}{\log _{10} \frac{M_{*} g^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}}-0.056} \tag{74}
\end{equation*}
$$

where g_{*}^{\prime} is the apparent gravity at the height h_{*}. For the purposes of this equation it is assumed that the atmosphere rotates with the earth as a solid out to the distance $r_{*}=a+h_{*}$, and therefore that Eq. (ll) is applicable. If it should be assumed that the composition at h_{*} is $100 \% \mathrm{O}\left(M_{*}=16\right)$, then $n_{0}=n_{*}$ and the temperature equation is ${ }^{[7]}$

$$
\begin{equation*}
T_{*}=\frac{19756}{\log _{10} \frac{M_{*} g^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}}+0.602} \tag{75}
\end{equation*}
$$

[7] When $d=3 \times 10^{-8} \mathrm{~cm}$ is used, Eq. (72) becomes

$$
\begin{equation*}
T=\frac{9878}{0.653+0.5 \log n_{0}}, \tag{72a}
\end{equation*}
$$

and Eqs. (74) and (75) become respectively

$$
T_{*}=\frac{19756}{\log _{10} \frac{M_{*} g_{*}^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}}+0.648}(74 \mathrm{a}), \quad \quad T_{*}=\frac{19756}{\log _{10} \frac{M_{*} g_{*}}{\sqrt{2} \pi d^{2} R_{u} T_{*}}+1.306} \quad \text { (75a). }
$$

These equations may be solved for T_{*}, provided M_{*} and g_{*}^{\prime} are known. The apparent gravity g_{*}^{\prime} is a quantity which varies very slowly with altitude and need be specified only very roughly. For this purpose, advantage may be taken of the results of model II - Tables 29-33 - which indicate that as far as order of magnitude is concerned the height h_{*} may be expected to lie somewhere within the limits of 500 and 1000 km . It is also reasonable to suppose that the relative amount of atomic oxygen present at the base of the exosphere lies between the limits given by $16 \leqq M_{*} \leqq 24$. On this basis, Table 38 has been prepared to show the possible values of T_{*}. Since there is some uncertainty concerning the exact value which should be used for d, the calculation was made for the two values $d=2 \times 10^{-8} \mathrm{~cm}$ and $d=3 \times 10^{-8} \mathrm{~cm}$. No account is taken here of any possible variation of T_{*} with latitude, although this could have been done by using the appropriate value for n_{0} in the F_{2} layer at the equator - Eq. (7la).

It is seen from Table 38 that the value of T_{*} is fairly insensitive to the rather wide range of conditions imposed. For this reason an average value $T_{*}=2500^{\circ} \mathrm{K}$ will be adopted.

Table 38
possible values for the temperature T_{*} IN the exosphere

\boldsymbol{M}_{*}	g_{*}^{\prime} $\mathrm{cm} / \mathrm{sec}^{2}$	d cm	\boldsymbol{T}.
24	$840.272^{\sim}(500 \mathrm{~km})$	2×10^{-8}	2581
24	$840.272 \sim(500 \mathrm{~km})$	3×10^{-8}	2457
24	$730.655 \sim(1000 \mathrm{~km})$	2×10^{-8}	2598
24	$730.655 \sim(1000 \mathrm{~km})$	3×10^{-8}	2477
16	$840.272 \sim(500 \mathrm{~km})$	2×10^{-8}	2420
16	$840.272 \sim(500 \mathrm{~km})$	3×10^{-8}	2311
16	$730.655 \sim(1000 \mathrm{~km})$	2×10^{-8}	2435
16	$730.655 \sim(1000 \mathrm{~km})$	3×10^{-8}	2328

III-B. THE HEIGHT OF THE BASE OF THE EXOSPHERE (DYNAMICAL ORBIT REGION)

The height h_{*} of the base of the exosphere has already been discussed to some extent in Section II-F in connection with model II. The treatment given there was slightly ambiguous, inasmuch as the collision probability of a particle escaping to infinity was not specified as definitely as could be desired. The concept of the exosphere - or dynamical orbit region - is that there will exist a certain height h_{*} (actually a transition layer), situated somewhere above the F_{2} layer, where the mean free path of neutral gas particles becomes so large and the collision frequency so small that particles moving upward from this height begin to behave more or less as
free bodies moving in a gravitational field. A particle moving upward from the height h_{*} will travel over large distances before it collides with another particle, the total number of collisions experienced depending upon the starting height h_{*} and the vertical distance travelled.

The probability of collision P of an atmóspheric particle in travelling upward through a vertical distance L has already been discussed in Section II-F, where it was shown, Eq. (52), that $P=2 \pi d^{2} \int_{0}^{L} n d h$. The height h_{*} of the base of the exosphere may be conveniently defined as the height at which the mean free path L of an upwardmoving gas particle becomes infinite. Thus the height h_{*} is defined by the condition that the gas particle is certain to undergo a collision ($P=1$) only when the mean free path is infinite ($L=\infty$). Or, stated in a slightly different manner, a particle moving upward from h_{*} would, if it had sufficient velocity (i.e., the escape velocity), travel to infinity experiencing only a single collision with another particle. On this basis, the relation which defines h_{*} is ${ }^{\top}$

$$
\begin{equation*}
1=\sqrt{2} \pi d^{2} \int_{h_{*}}^{\infty} n d h . \tag{76}
\end{equation*}
$$

From the hydrostatic equation ($d p / p=-M g^{\prime} d h / R_{u} T=-d h / H_{1}$, see (53a)) and the equation of state ($p=n k T$), the vertical distribution of the particle density (number density) above a height h_{*} may be expressed by

$$
\begin{equation*}
n=n_{*} \frac{T_{*}}{T} e^{-\int_{h_{*}}^{h} \frac{M_{g}}{R_{u} T} d h}=n_{*} \frac{T_{*}}{T} e^{-\int_{h}^{h} \frac{d h}{H}} \tag{77}
\end{equation*}
$$

where $H=k T / m g^{\prime}=R_{u} T / M g^{\prime}$ is the scale height. Since in model III the region above h_{*} is considered to be isothermal, $T=T_{*}$ is to be used in the region $h>h_{*}$. Con= sider now a particle moving vertically upward from h_{*} out to infinity. As far as the collision probability of this particle is concerned, this depends only upon the total number of particles it passes through above h_{*} and not upon how these particles are distributed in the vertical. Therefore it is not necessary to know the actual distribution of M (i.e., n) but only the total number of particles N_{*} above h_{*} contained in a column of unit cross section. The total number of particles N_{*} may be obtained from the simple concepts of the scale height.

Although the scale height was discussed previously in Section II-F, it is instructive to examine this quantity from a slightly different point of view. Consider the pressure p_{*} at a given (but arbitrary) height h_{*} in the atmosphere. This pressure is simply the weight of the total atmosphere above h_{*} contained in a column of unit cross section, and is therefore expressed by $p_{*}=\int_{h_{*}}^{\infty} \rho g^{\prime} d h$. Suppose now that the actual atmosphere above h_{*} is imagined to be replaced by an equivalent atmosphere having the constant density ρ_{*} and the constant temperature T_{*}, and that this equivalent atmospheric layer has exactly the correct thickness to give the same

[^14]pressure p_{*} as before. Also, as a further property specified in the definition of the equivalent layer, assume that gravity is constant with the value g_{*}^{\prime} throughout this layer. Denoting this thickness by the quantity H_{*}, we have the relation
\[

$$
\begin{equation*}
p_{*}=\int_{h_{*}}^{\infty} \rho g^{\prime} d h=\int_{h_{*}}^{h_{*}+H_{*}} \rho_{*} \mathrm{~g}^{\prime} d h=\rho_{*} \mathrm{~g}^{\prime} \int_{h_{*}}^{h_{*}^{+H} d H^{*}=\rho_{*} \mathrm{~g}_{*} H_{*}, ~} \tag{77a}
\end{equation*}
$$

\]

which defines H_{*}. It is evident that the equivalent layer has the properties of an incompressible fluid and therefore does' not satisfy the equation of state. At the level h_{*}, however, the equation of state $p_{*} / \rho_{*}=R_{u} T_{*} / M_{*}$ is still valid and, when combined with (77a), yields the relation $H_{*}=R_{u} T_{*} / M_{*} g_{*}^{\prime}$. This gives the thickness of the equivalent isothermal incompressible (i.e., homogeneous) layer and is called the scale height. Since, in deriving relation (77a), there werenorestrictions concerning the amount of dissociation or of diffusion equilibrium which might be present above h_{*} in the actual atmosphere, the value of the scale height is unaffected by the presence of these processes. Since $\rho=\rho_{*}$ is constant in the homogeneous layer, it follows from (18) that neither n nor M are necessarily constant in this layer, but only that the product $M n=$ constant $=M_{*} n_{*}$. It does not appear that this concept of the scale height, (77a), is capable of yielding any information concerning the value of N_{*}.

Suppose now that the actual atmosphere above h_{*} is imagined to be replaced by a second hypothetical atmosphere having the same mass and therefore giving the same pressure p_{*} as the actual atmosphere, but for which the temperature, composition, and gravity are assumed constant, with the values T_{*}, M_{*}, and g_{*}^{\prime} respectively. Unlike the first case, in which that atmosphere above h_{*} was considered as an incompressible fluid, in this second case the atmosphere behaves as a gas (is compressible) and obeys the equation of state. Theoretically, this atmosphere will extend to infinity. It is evident that even though diffusion equilibrium may exist in the actual atmosphere, this second hypothetical atmosphere will give the correct value for the total number of particles N_{*} provided no dissociation occurs above $h_{*}{ }^{[8]}$. It is also evident that the scale height has the same value as before - i.e., $H=H_{*}=R_{u} T_{*} / M_{*} g_{*}^{\prime}$. Using this value for H, the number density equation, (77), becomes simply

$$
\begin{equation*}
n=n_{*} e^{-\frac{\left(h-h_{*}\right)}{H_{*}}} . \tag{78}
\end{equation*}
$$

The total number of particles N_{*} is therefore obtained by the integration

$$
\begin{equation*}
N_{*}=\int_{h_{*}}^{\infty} n d h=n_{*} H_{*} \equiv n_{*} \frac{R_{u} T_{*}}{M_{*} g_{*}^{\prime}} . \tag{78a}
\end{equation*}
$$

[^15]In this second concept H_{*} is simply interpreted, (78), as the increase in height necessary for n to decrease to $1 / e$ of its value at n_{*}. (Also, see Chapman, Ref. 15, pp. 489-492.)

Using the result contained in (78a), it follows from (76) that

$$
\begin{equation*}
n_{*}=\frac{1}{\sqrt{2} \pi d^{2} H_{*}} \equiv \frac{M_{*} g_{*}}{\sqrt{2} \pi d^{2} R_{u} T_{*}} . \tag{79}
\end{equation*}
$$

This is essentially the equation which defines the height h_{*} of the base of the exosphere.

The height h_{*} may now be obtained by applying Eq. (77) between the level h_{o} (the height of the F_{2} layer) and the level h_{*} (the height of the base of the exosphere). In this interval it will be assumed that the temperature variation is linear, such that $T=T_{0}+\alpha\left(h-h_{0}\right)$, where $\alpha=\left(T_{*}-T_{0}\right) /\left(h_{*}-h_{0}\right)$. Since in model III the atmos phere will be treated on the basis that complete diffusion equilibrium exists beginning at about 100 km above the F_{2} layer, it follows that the molecular weight M_{*} will be less than M_{o}. For the purpose of determining h_{*} it will be assumed that the variation of M may be approximated by the linear relation $M=M_{0}-\beta\left(h-h_{0}\right)$, where $\beta=\left(M_{0}-M_{*}\right) /\left(h_{*}-h_{0}\right)$.

It follows from Eq. (77) that

$$
\begin{align*}
n_{*}=\frac{M_{*} g_{*}^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}} & =n_{0} \frac{T_{0}}{T_{*}} \exp -\left[\frac{\bar{g}^{\prime}}{R_{u}} \int_{h_{0}}^{h_{*}} \frac{M_{0}-\beta\left(h-h_{0}\right)}{T_{0}+\alpha\left(h-h_{0}\right)} d h\right] \\
& =n_{0} \frac{T_{0}}{T_{*}} \exp -\left[\frac{\bar{g}^{\prime}}{R_{u}} \int_{r_{0}}^{r_{*}} \frac{M_{0}-\beta\left(r-r_{0}\right)}{T_{0}-\alpha\left(r-r_{0}\right)} d r\right] \tag{80}
\end{align*}
$$

where $r=a+h$, and $g^{\prime}=g_{a}(a / r)^{2}-r \Omega^{2} \cos \theta$ is the apparent gravity. In comparison with the uncertainty involved in the molecular weight and temperature, the variation in gravity may be neglected in the interval ($h_{*}-h_{0}$) and it is sufficiently accurate here to use a mean value \bar{g}^{\prime}. Performing the integration, Eq. (80) may be written

$$
\begin{align*}
n_{*}= & \frac{M_{*} g_{*}^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}}=n_{0} \frac{T}{T_{*}} \exp -\left\{\frac { \overline { g } ^ { \prime } } { R _ { u } } \left[\frac{M_{0}}{\alpha}\left(\log \left[\alpha\left(r_{*}-r_{o}\right)+T_{o}\right]-\log T_{o}\right)\right.\right. \\
& \left.\left.-\beta\left(\frac{r_{*}-r_{0}}{\alpha}-\frac{T_{0}}{\alpha^{2}} \log \left[\alpha\left(r_{*}-r_{0}\right)+T_{0}\right]+\frac{T_{0}}{\alpha^{2}} \log T_{o}\right)\right]\right\} \tag{81}
\end{align*}
$$

Inserting $a=\left(T_{*}-T_{0}\right) /\left(r_{*}-r_{0}\right)$ and $\beta=\left(M_{0}-M_{*}\right) /\left(r_{*}-r_{0}\right)$, this gives the relation

$$
\begin{align*}
\frac{M_{*} \mathrm{~g}_{*}^{\prime}}{\sqrt{2} \pi d^{2} R_{u} T_{*}} & =n_{\mathrm{o}} \frac{T_{\mathrm{o}}}{T_{*}} \exp -\left\{\frac { \overline { \mathrm { g } } ^ { \prime } } { R _ { u } } \left[M_{\mathrm{o}}\left(\frac{r_{*}-r_{\mathrm{o}}}{T_{*}-T_{\mathrm{o}}}\right) \log \frac{T_{*}}{T_{\mathrm{o}}}\right.\right. \\
& \left.\left.-\frac{M_{*}-M_{\mathrm{o}}}{T_{*}-T_{\mathrm{o}}}\left(\left[r_{*}-r_{\mathrm{o}}\right]\left[1-\frac{T_{\mathrm{o}}}{T_{*}-T_{\mathrm{o}}} \log \frac{T_{*}}{T_{\mathrm{o}}}\right]\right)\right]\right\} . \tag{82}
\end{align*}
$$

The height h_{*} of the exosphere ($h_{*}=r_{*}-a$) is found by numerical solution of this equation for r_{*}, using $T_{*}=2500^{\circ} \mathrm{K}$ and the following values for the F_{2} layer:

$$
\begin{array}{ll}
\text { Latitude } 0^{\circ}: & h_{\mathrm{o}}=400 \mathrm{~km}, T_{\mathrm{o}}=1800^{\circ} \mathrm{K}, M_{\mathrm{o}}=24, a=6378.4 \mathrm{~km} \\
\text { Latitude } 45^{\circ}: & h_{\mathrm{o}}=300 \mathrm{~km}, T_{\mathrm{o}}=1100^{\circ} \mathrm{K}, M_{\mathrm{o}}=24.35, a=6367.5 \mathrm{~km}
\end{array}
$$

Although the exact value of M_{*} is as yet unknown (since this depends upon the results of a diffusion equilibrium calculation), it appears safe to assume that the composition must lie between the limits $24>M_{*}>12$. The particle diameter d may likewise be taken to lie within the limits $2 \times 10^{-8} \mathrm{~cm}<d<3 \times 10^{-8} \mathrm{~cm}$. On the basis of these limits, a range of values for h_{*} is obtained as shown in Table 39. From these results it is believed satisfactory to adopt the average values $h_{*}=750 \mathrm{~km}$ at lat. 0°, and $h_{*}=650 \mathrm{~km}$ at lat. 45°. These values are not greatly different from those obtained for model II.

Table 39
POSSIBLE VALUES FOR THE HEIGHT h. OF THE BASE OF THE EXOSPHERE
(Calculated From Eq. (82))

Latitude,	Molecular Weight, M_{*}	Particle Diameter, d	Calculated Height, h_{*}
0°	24	$2 \times 10^{-8} \mathrm{~cm}$	614 km
0°	24	$3 \times 10^{-8} \mathrm{~cm}$	691 km
0°	16	$2 \times 10^{-8} \mathrm{~cm}$	617 km
0°	16	$3 \times 10^{-8} \mathrm{~cm}$	682 km
0°	12	$2 \times 10^{-8} \mathrm{~cm}$	790 km
0°	12	$3 \times 10^{-8} \mathrm{~cm}$	900 km
45°	24.35	$2 \times 10^{-8} \mathrm{~cm}$	517 km
45°	24.35	$3 \times 10^{-8} \mathrm{~cm}$	576 km
45°	$16 \times 10^{-8} \mathrm{~cm}$	514 km	
45°	16	$2 \times 10^{-8} \mathrm{~cm}$	565 km
45°	12	$2 \times 10^{-8} \mathrm{~cm}$	685 km
45°	12	$3 \times 10^{-8} \mathrm{~cm}$	772 km

III-C. DIFFUSION EQUILIBRIUM

It seems reasonable to suppose that at sufficiently great heights above the earth's surface, the processes, such as convection and turbulence, which cause mixing of the atmosphere (and therefore constant composition) will become inoperative, and that the constituent gases of the atmosphere will then become distributed in the vertical according to their molecular weights, with a greater concentration of heavy gases below and of light gases above. Thus, when the particle densities of the gases are distributed in the vertical in such a way that each constituent is in gravity equilibrium with its own partial pressure (Dalton's law) at all heights above a certain lower level, the atmosphere above this level is said to be in diffusion equilibrium. The minimum height above which this state of affairs exists will be referred to as the level of diffusion equilibrium.

An analysis of the diffusion or settling-out process in an atmospheric gas mixture has been given by Maris ${ }^{(89)}$ and Epstein ${ }^{(70)}$. Calculations of the composition of the upper atmosphere at various heights on the basis of diffusion equilibrium have been made by Chapman and Milne ${ }^{(71)}$ (1920), and by Maris ${ }^{(69)}$ (1928-1929). Chapman and Milne assumed that diffusion equilibrium would exist beginning in the stratosphere at heights of the order of 20 to 50 km ; and, since their analysis was made before the high ionosphere temperatures were known, they assumed the remainder of the upper atmosphere above 50 km to be at the constant low temperature $219^{\circ} \mathrm{C}\left(492^{\circ} \mathrm{K}\right)$. Maris concluded that diffusion equilibrium must exist above 100 km and assumed that the temperature of the upper atmosphere never exceeds $360^{\circ} \mathrm{C}\left(633^{\circ} \mathrm{K}\right)$. In view of the high ionosphere temperatures which are now believed to exist above 100 km , the results of these two investigations are no longer applicable, and it is therefore necessary to consider anew the effects of diffusion equilibrium on the basis of the ionosphere temperatures which have been presented.

For this purpose advantage may be taken of the results of Mitra and Rakshit ${ }^{(35)}$ (1938) who - realizing the implications of the high ionosphere temperatures in this connection - investigated diffusion equilibrium in the upper atmosphere on the basis of the high F region temperatures. They assumed in their calculations a temperature of $300^{\circ} \mathrm{K}$ at 100 km , increasing linearly to $1100^{\circ} \mathrm{K}$ at 300 km - the same temperature distribution as used in the present study for the atmosphere at lat. 45° (Fig. 7). Since the results of their calculations show that complete diffusion equilibrium will certainly exist above 400 km at lat. 45°, this figure will be adopted as the height of the diffusion equilibrium level at lat. 45°. Similar results are not available corresponding to the vertical temperature distribution used at the equator (Fig. 5), and in view of the fact that these temperatures are higher than those at lat. 45°, 500 km will be adopted as the height of the diffusion equilibrium level at lat. 0°.

III-D. DENSITY CALCULATION FOR THE REGION BETWEEN THE F_{2} LAYER AND THE LEVEL OF DIFFUSION EQUILIBRIUM

In order to carry out the calculation of the vertical distribution of density above the F_{2} layer, the atmosphere above this level must be treated as three separate regions - the region between the F_{2} layer and the level of diffusion equilibrium,
the region between the level of diffusion equilibrium and the base of the exosphere, and the region of the isothermal exosphere extending outward into space. As pointed out above - Section III-B - the temperature is assumed to increase linearly between the F_{2} layer at distance r_{0} from the center of the earth ($r_{0}=a+h_{0}$) and the base of the exosphere at distance $r_{*}\left(r_{*}=a+h_{*}\right)$. The temperature at any level r in the region $r_{o} \leqq r \leqq r_{*}$ is determined by

$$
\left.\begin{array}{l}
T=T_{0}+a\left(r-r_{o}\right) \tag{83}\\
\alpha=\frac{T_{*}-T_{0}}{r_{*}-r_{0}}
\end{array}\right\}
$$

At the equator, $\alpha=2 \times 10^{-5}{ }^{\circ} \mathrm{K} / \mathrm{cm}$; at lat. $45^{\circ}, \alpha=4 \times 10^{-5}{ }^{\circ} \mathrm{K} / \mathrm{cm}$. If the subscript d is used to denote the level of diffusion equilibrium, then since r_{d} is less than r_{*} it follows that (83) also gives the temperature distribution in the first region to be considered - $r_{o} \leqq r \leqq r_{d}$. Consideration must next be given to the distribution of the mean molecular weight M in this region.

Recent observational evidence from ionospheric radio reflections in the tropics ${ }^{(72)}$, together with theoretical considerations of physical processes in the upper atmosphere, strongly suggest the existence, above the F_{2} layer, of an additional ionized layer called the G layer, which is situated at heights of the order of 400 to $700 \mathrm{~km}{ }^{(73)}$. The existence of a G layer is interpreted as indicating that the nitrogen must be dissociated at these levels, since otherwise the number density would not be great enough to produce, by ionization, a sufficiently large electron density to account for the reflection of radio waves. In the absence of any further, more precise, information concerning the dissociation of nitrogen, it seems permissible - and is at the same time convenient - to assume, as an average condition, that complete dissociation of nitrogen exists beginning at the level of diffusion equilibrium. Accordingly, all nitrogen will be assumed to exist in the atomic state beginning at the height h_{d}, and the composition at this level will be that corresponding to complete dissociation of a mixture originally composed of O_{2} and N_{2} in the proportions shown at 83 km in Tables 7 and 8 . We thus have the following conditions upon which the calculations will be based:

Latitude, 0°
F_{2} layer: $h_{o}=400 \mathrm{~km}$, composition $=33 \% \mathrm{O}+67 \% \mathrm{~N}_{2}$ by volume, $M_{\mathrm{o}}=24.00, T_{\mathrm{o}}=1800^{\circ} \mathrm{K}$ Level of diffusion equilibrium: $h_{d}=500 \mathrm{~km}$, composition $=20 \% \mathrm{O}+80 \% \mathrm{~N}$ by volume,

$$
M_{d}=14.40, T_{d}=2000^{\circ} \mathrm{K}
$$

Latitude, 45°
F_{2} layer: $\quad h_{o}=300 \mathrm{~km}$, composition $=30.5 \% 0+69.5 \% \mathrm{~N}_{2}$ by volume, $M_{0}=24.35$, $T_{\mathrm{o}}^{\mathrm{o}}=1100^{\circ} \mathrm{K}$
Level of diffusion equilibrium: $\quad h_{d}=400 \mathrm{~km}$, composition $=20 \% \mathrm{O}+80 \% \mathrm{~N}$ by volume, $M_{d}=14.40, T_{d}=1500^{\circ} \mathrm{K}$

Although the composition at 83 km at lat. $45^{\circ}-30.5 \% \mathrm{O}+69.5 \% \mathrm{~N}_{\mathbf{2}}$ - would lead to the value $M_{d}=14.33$ (for $18 \% 0+82 \% \mathrm{~N}$), it will be noted that the value $M_{d}=$ $14.40(20 \% 0+80 \% N)$ has been used instead. This has but negligible effect on the calculations and allows the convenience of having the same composition at the diffusion level at both latitudes.

Between the heights h_{0} and h_{d} a linear variation of the molecular weight will be assumed, as given by the relation

$$
\begin{equation*}
M=M_{0}-\beta\left(r-r_{0}\right) \text { and } \beta=\frac{M_{0}-M_{d}}{r_{d}-r_{0}}, \text { for } r_{0} \leqq r \leqq r_{d} \tag{84}
\end{equation*}
$$

At the equator, $\beta=9.60 \times 10^{-7} 1 / \mathrm{cm}$; at lat. $45^{\circ}, \beta=9.95 \times 10^{-7} \mathrm{l} / \mathrm{cm}$. From Eqs. (9) and (10) the pressure p in the region $r_{0} \leqq r \leqq r_{d}$ is given by ${ }^{[8]}$

$$
\log \frac{p}{p_{o}}=-\frac{1}{R_{u}} \int_{r_{o}}^{\frac{r}{M g^{\prime}}} \frac{T}{T}
$$

[9] Introducing (83) and (84) and the relation (11) for g', the pressure equation may be written

$$
\begin{align*}
\log \frac{p}{p_{0}}= & -\frac{1}{R_{u}} \int_{r_{0}}^{r} \frac{(M-\beta r)\left[g_{a}\left(\frac{a}{r}\right)^{2}-r \Omega^{2} \cos \theta\right]}{T_{0}+\alpha\left(r-r_{0}\right)} d r \\
& -\frac{\left(M_{0}+\beta r_{0}\right)}{R_{u}} \int_{r_{0}}^{r} \frac{\left.g_{a}\left(\frac{a}{r}\right)^{2}-r \Omega^{2} \cos ^{2} \theta\right]}{T_{0}+\alpha\left(r-r_{0}\right)} d r \tag{84a}
\end{align*}
$$

The second integral has already been evaluated and is given as Eq.(14b). The first integration is readily carried out yielding

$$
\begin{align*}
& -\frac{1}{R_{u}} \int_{r_{0}}^{r} \frac{(M-\beta r)\left[g_{a}\left(\frac{a}{r}\right)^{2}-r \Omega^{2} \cos ^{2} \theta\right]}{T_{0}+a\left(r-r_{0}\right)} d r \\
= & -\frac{1}{R_{u}}\left[M_{0} a+\beta\left(T_{0}-a_{r_{0}}\right)\right]\left\{\left[\frac{g_{a} a^{2}}{\left(T_{0}-a_{0}\right)^{2}}+\frac{\Omega^{2}\left(T_{0}-a_{r_{0}}\right)}{\alpha^{3}}\right] \log \frac{T_{0}+\alpha\left(r_{0}-r_{0}\right)}{T_{0}}\right. \\
-\frac{g_{a} a^{2}}{\left(T_{0}-a r_{0}\right)^{2}} \log \frac{r_{0}}{r_{0}} & \left.-\frac{\Omega^{2} \cos ^{2} \theta}{\alpha^{2}}\left(r_{*}-r_{0}\right)\right\}+\left(r_{*}-r_{0}\right)\left[\frac{M_{0} g_{a} a^{2}}{r_{0} r_{*}\left(T_{0}-a_{r_{0}}\right)}\right. \\
& \left.+\frac{\beta}{2 \alpha} \Omega^{2} \cos ^{2} \theta\left(r_{*}+r_{0}\right)\right] . \tag{84b}
\end{align*}
$$

[^16]As in model II, it is assumed that the atmosphere rotates with the earth as a solid up to the base of the exosphere. Introducing (83) and (84), and assuming that the integration will be carried out step-wise for individual intervals $\Delta r=r_{i+1}-r_{i}$ which are sufficiently small that an average value \bar{g}_{i}^{\prime} may be used in each interval ${ }^{i}$, the formula used for calculating the pressure becomes

$$
\begin{equation*}
\frac{p_{i+1}}{p_{i}}=\exp -\left[\frac{\bar{g}_{i}^{\prime}}{R_{u}} \int_{r_{i}}^{r_{i+1}} \frac{\left[M_{i}-\beta\left(r-r_{i}\right)\right]}{\left[T_{i}+\alpha\left(r-r_{i}\right)\right]} d r\right] \tag{85}
\end{equation*}
$$

Performing the integration - see (81) - this gives the pressure formula

$$
\begin{align*}
\frac{p_{i+1}}{p_{i}} & =\exp -\left\{\frac { \overline { g } _ { i } ^ { \prime } } { R _ { u } } \left[\frac{M_{i}}{\alpha}\left\{\log \left[a\left(r_{i+1}-r_{i}\right)+T_{i}\right]-\log T_{i}\right\}\right.\right. \\
& -\beta\left\{\frac{r_{i+1}-r_{i}}{a}-\frac{T_{i}}{a^{2}} \log \left[a\left(r_{i+1}-r_{i}\right)+T_{i}\right]+\frac{T_{i}}{a^{2}} \log T_{i}\right\} \tag{86}
\end{align*}
$$

Having the pressure, temperature, and mean molecular weight, the density is calculated as usual from the equation of state, Eq. (16).

III-E. DENSITY CALCULATION FOR THE REGION BETWEEN THE LEVEL OF DIFFUSION EQUILIBRIUM AND THE BASE OF THE EXOSPHERE

Above the level h_{d} of diffusion equilibrium the gases begin to separate according to their individual molecular weights, and it is necessary to determine the density distribution separatély, for each constituent gas. Let the subscript x denotea constituent gas. According to Dalton's law of partial pressures, each constituent x of the mixture behaves as though it alone were present, and we have

$$
\begin{align*}
& d p_{x}=-\rho_{x} g^{\prime} d r, p_{x}=\rho_{x} \frac{R_{u}}{M_{x}} T, \text { and } \\
& \frac{p_{x}}{p_{x d}}=\exp \left[-\frac{M_{x}}{R_{u}} \int_{r_{d}}^{r} \frac{g^{\prime}}{T} d r\right] . \tag{87}
\end{align*}
$$

Making use of the equation of state and introducing $g^{\prime}=g_{a}(a / r)^{2}-r \Omega^{2} \cos ^{2} \theta$ and $T=T_{d}+\alpha\left(r-r_{d}\right)$, Eq. (87) yields the density relation

$$
\begin{gather*}
\frac{\rho_{x}}{\rho_{x d}}=\frac{T_{d}}{T_{d}+a\left(r-r_{d}\right)} \exp -\frac{M}{R_{u}}\left\{\left(r-r_{d}\right)\left[\frac{\mathrm{g}_{a} a^{2}}{r r_{d}\left(T_{d}-a r_{d}\right)}-\frac{\Omega^{2} \cos ^{2} \theta}{\alpha}\right]\right. \\
\left.-\left[\frac{a g_{a} a^{2}}{\left(T_{d}-a r_{d}\right)^{2}}+\frac{\left(T_{d}-a r_{d}\right) \Omega^{2} \cos ^{2} \theta}{a^{2}}\right] \log \frac{T_{d}}{T_{d}+a\left(r-r_{d}\right)}-\frac{a}{\left(T_{d}-a r_{d}\right)^{2}} g_{a} a^{2} \log \frac{r}{r_{d}}\right\}, \tag{88}
\end{gather*}
$$

see Eq. (14b). This formula is used to calculate the partial densities from h_{d} up to the level of the base of the exosphere h_{*}. It is noted that since there are no approximations involved in this equation, it is not necessary to carry out the calculations step-wise by means of small height intervals.

Since the lighter gases become important in the diffusion equilibrium region above h_{d}, it is necessary in this region to consider hydrogen and helium as possible constituents of the atmosphere. No attempt will be made here to enter into a discussion of the controversial question regarding the existence of hydrogen and helium in the upper atmosphere ${ }^{(15),(46),(74),(75)}$. Since the existence of these elements has not been disproved, it will be assumed that hydrogen and helium are present and that at the level h_{d} of diffusion equilibrium the relative amounts present are approximately the same as in the troposphere (Table 6, p.16). Since all oxygen is dissociated at the level h_{d}, and since hydrogen has a lower dissociation potential than oxygen, it is not considered unreasonable to expect that all hydrogen will be dissociated at and above h_{d}, and it will be assumed that this is the case. The composition used at the level h_{d} for starting the calculations in the diffusion equilibrium region is given in Table 40^{\dagger}. The percentages of helium and especially of hydrogen are not exactly the same as those given in Table 6, but have been rounded off to an even number. In view of the order of accuracy of the analysis as a whole, this approximation seems entirely justified. Other atmospheric constituents which occur in the troposphere, such as $\mathrm{Ar}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$ are probably relatively unimportant in this region of the atmosphere and have been neglected.

Knowing the total density ρ_{d} at the level h_{d} (from the calculations of Section III-D), the partial densities $\rho_{x d}$ at this level are determined from the relation

$$
\begin{equation*}
\rho_{x d}=n_{x d} m_{x d}=C_{x d} \rho_{d}, \tag{89}
\end{equation*}
$$

\dagger For Tables 40 through 45 see pages 125 through 130.
where $n_{x d}$ is the partial number density and $C_{x d}$ is the percentage composition by mass of the constituent x at the level of diffusion equilibrium ($h=h_{d}$). Using these values of $\rho_{x d}$ (Table 40), the partial gas densities in the region from h_{d} to h_{*} are calculated according to Eq. (88). The total gas density ρ at any level is obtained as the sum of the partial densities, $\rho=\sum \rho_{x}$. The mean molecular weight M is determined from the relation [10] (Ref.(71), p.365)

$$
\begin{equation*}
M=\frac{1}{\sum \frac{\rho_{\boldsymbol{x}}}{\rho} \frac{1}{M_{x}}} \tag{90}
\end{equation*}
$$

and the total pressure is then obtained from the equation of state, $p=\rho \frac{R_{u}}{M} T$. The percentage composition by mass, C_{x}, is determined by the ratios $C_{x}=\rho_{x} / \rho$. Since $\rho_{x}=m_{x} n_{x}=\rho C_{x}$, the partial number densities may be calculated from the relation

$$
\begin{equation*}
n_{x}=\frac{\rho_{x}}{M_{x_{1} m_{1}}}=\frac{\rho C_{x}}{M_{x}^{m_{1}}} \tag{91}
\end{equation*}
$$

where m_{1} is the mass of unit atomic weight ($m_{1}=1.6489 \times 10^{-24}$ gram). On the basis of the calculations described, the conditions obtaining at the base of the exosphere h_{*} are as shown in Table 41.

III-F. DENSITY CALCULATION FOR THE EXOSPHERE

In the free-flight region, or exosphere, above h_{*} it is no longer permissible to assume that the atmospheric particles rotate with the earth as a solid, and in this region, since the particles move in individual orbits, their motion will be governed by the condition of constant angular momentum as described in Section II-F. Since this condition requires that $\omega=\left(r_{*} / r\right)^{2} \Omega$, Eq. (61), the expression for the apparent gravity becomes

$$
\begin{equation*}
g^{\prime}=g_{a}\left(\frac{a}{r}\right)^{2}-r \omega^{2} \cos ^{2} \theta=g_{a}\left(\frac{a}{r}\right)^{2}-\frac{r_{*}^{4} \Omega^{2}}{r^{3}} \cos ^{2} \theta \tag{92}
\end{equation*}
$$

[10] This may be shown as follows: The mean molecular weight M is defined by $M=\rho / n m$, where ρ is total density, n is total number density, and mis the mass of a particle of unit atomic weight - see Eq. (18). This may also be written $M=\rho / m \sum_{n_{x}}$. Eq. (18) also holds for the partial densities and we have $n_{x}=\rho_{x} / m_{1} M_{x}$. Using this expression for n_{x}, it follows that

$$
W=\frac{\rho}{m_{1} \sum n_{x}}=\frac{\rho}{m_{1} \sum \frac{\rho}{m_{1} M_{x}}}=\frac{1}{\sum \frac{\rho_{x}}{W_{x}}}=\frac{\rho_{x}}{\sum \frac{1}{\rho} \frac{H_{x}}{m_{x}}}
$$

Owing to the isothermal property of the exosphere, the density formula becomes relatively simple. Thus for the exosphere where $T=T_{*}=$ const., the variation in density is given by

$$
\begin{gather*}
\frac{\rho_{x}}{\rho_{x_{*}}}=\exp \left\{-\frac{M_{x_{*}}}{R_{u} T_{*}} \int_{r_{*}}^{r^{r}}\left[g_{a}\left(\frac{a}{r}\right)^{2}-\frac{r_{*}^{4} \Omega^{2}}{r^{3}} \cos ^{2} \theta\right] d r\right\}, \text { or } \tag{93}\\
\frac{\rho_{x}}{\rho_{x_{*}}}=\exp \left\{-\frac{M_{x_{*}}}{R_{u} T_{*}}\left[g_{a} \frac{a^{2}}{r_{*}}\left(1-\frac{r_{*}}{r}\right)-\frac{1}{2} r_{*}^{2} \Omega^{2}\left(1-\frac{r_{*}^{2}}{r^{2}}\right) \cos ^{2} \theta\right]\right\} \tag{94}
\end{gather*}
$$

The total density, mean molecular weight, and total pressure are calculated as explained in Section III-E.

The basic characteristics of atmospheric model III together with the methods employed in its calculation have now been completely described. The results of the calculations are given in Tables 42-45. The vertical distribution of the density ratio σ from the F_{2} layer up to 1000 miles is plotted in Figs. $33-36^{\dagger}$. The corresponding vertical temperature distribution is shown in Figs. 37 and 38.
IV. CONCLUSIONS

Three different atmospheric models have been treated, which, while exactly the same below the F_{2} layer, have different properties and characteristics above this level.

As far as the atmosphere below the F_{2} layer is concerned, the results derived here up to 120 km may be compared with those given by Warfield ${ }^{(13)}$ - both studies were carried out independently and appeared at about the same time. To make this comparison, a plot of the density ratio and the mean molecular weight used (for lat. 45°) is shown in Figs. 39 and 40 . Both calculations were based upon exactly the same vertical distribution of temperature, Table 3 and Fig. 3. It is seen from Fig. 39 that the density distribution is practically the same for both calculations, particularly up to about 80 km , where the dissociation of oxygen begins to take place. The slight differences shown are due mainly to the differences in the values used for the vertical distribution of composition (Fig. 40) and possibly, to some extent, to differences in the manner in which gravity has been treated.

[^17]Above the F_{2} layer a comparison may be made between the three atmospheric modole considered here by using, for example, the values derived for lat. 45°; these are plotted in Fig. 41 (temperature), Fig. 42 (composition), and Fig. 43 (density ratio). Above 1000 km there is little doubt that model II, based on constant M, gives values for density which are much too low, and either model I or model III is much to be preferred in this region. Except for the uncertainties in the determination of T_{*} which could have a considerable effect if the value used for T_{*} is much too high - it is believed that model III is the most acceptable of the three models considered.

An outstanding feature of Fig. 42 is the large vertical distance above h_{d} over which the composition for model III remains practically constant. This is the result of the fact that the atomic weights of nitrogen and oxygen are nearly equal and the circumstance that the atmosphere is composed almost entirely of these two elements at the level h_{d}. It is only above 3000 km that the presence of helium and hydrogen begins to have any appreciable effect in determining the composition. Above 10,000 km atomic hydrogen is the predominant element, and the composition again remains constant.

It was pointed out in connection with model I (Section II-E) that the vertical distribution of density obtained did not seem to be much affected by the particular value - $0.5,7.0,14.0-$ used for M_{L}. This result is shown in Fig. 44, where it is seen that the three curves lie very close together. It is on the basis of this result that it is considered satisfactory to use adopted values for model I, as calculated for the single average value $M_{L}=7.0$.

In view of the concepts leading to models I, II, and III, it appears unlikely that it would be necessary to consider as a possibility the condition $d T / d h<0$ at any level above the F_{2} layer. That is, the temperature above the F_{2} layer may be expected to increase or at least to reach an isothermal condition, but not to decrease. However, it is realized that the atmosphere has been considered herein from a rather broad point of view, and it has not been possible in the time available to analyze all the various implications of the concepts used. In particular, the extremely high temperatures associated with model I, and even the considerably lower temperatures associated with the exosphere of models II and III, might imply such a large amount of escape of the atmospheric gas particles that the possibility of the occurrence of such high temperatures would have to be abandoned. In this connection the following remarks by Spitzer ${ }^{(67)}$ are of particular interest.
"It is difficult to reconcile the high temperatures found for the upper atmosphere of the earth with what is known about the atmosphere of Mars. It is well established that Mars has a considerable atmosphere, and Kuiper (Yerkes Observatory) has shown recently from infrared spectra that this atmosphere contains about as much carbon dioxide as does that of the earth. On the other hand, it is also well established that the velocity of escape from Mars is about $1 / 2$ the velocity of escape from the earth. Since theoretical analysis shows that the shape of the radiation intensity-frequency curve is more important than the absolute intensity of the radiation, one would suppose that the temperature of the upper atmosphere of Mars would be about the same as for the earth. At such a high temperature the carbon and oxygen atoms would have left Mars long ago, in contradiction to the observed presence of these elements. The answer to this
dilemma is certainly not clear, since the various lines of evidence pointing to a high temperature for the upper atmosphere of the earth seem rather strong However, one cannot wholly exclude the possibility that the temperature of the earth's upper atmosphere may be considerably less than that which we have been led to assume."

Although the implications of the high temperature as regards the escape of atmosphere present a problem of very real concern and one which must certainly be investigated, it must be pointed out again - as mentioned in Section II-B in connection with model I - that the escape process is greatly hindered by the presence of the earth's magnetic field if the gas is more or less completely ionized. Thus it appears that the escape process cannot be adequately discussed until more is known concerning the degree of ionization of the upper atmosphere above the F_{2} layer. Model I, for example, although having a very high temperature at its limit, was assumed to be completely ionized there. Models II and III, on the other hand, although having a lower temperature, were assumed to consist mainly of neutral particles.

It was pointed out in Section I-A that the temperature (or more exactly, the quantity T / M in the F region may be deduced in two different ways from radio wave measurements: (1) by evaluating the scale height H in the reflecting layer from measurements of virtual height vs. reflected frequency, and (2) by evaluating the electron collision frequency ν_{e} in the reflecting layer from measurements of change in amplitude- of the reflected wave. Although the presence of high kinetic temperatures in the F region seems to be fairly well established, it would be extremely valuable - and of fundamental importance - tohave further theoretical investigations of the relation between the radio wave properties of the ionized layers and the quantities H and ν_{e}. Since it is the ratio T / M only which is determined by these methods - Eqs. (1) and (2) - the determination of the temperature itself is no more accurate than the value M used for the composition, which must be known or determined by independent means. Thus, there is a great need for more accurate information concerning the composition of the F region, and, in particular, the level at which the dissociation of nitrogen begins and the level at which the dissociation becomes complete.

Also, as pointed out in footnote [3], it would be a valuable contribution to the knowledge of the upper atmosphere if the extensive world-wide ionosphere data were analyzed and a deduction made of the corresponding temperature-height relationships These results could then be analyzed to determine mean values for the diurnal, seasonal, and geographical variations in the height and temperature of the ionized layers. Work along these lines - based on the CRPL data published by the National Bureau of Standards - has been initiated at RAND. This will give, for example, information concerning the temperature characteristics of the polar atmosphere, information which is entirely lacking at present. It should also give values for the temperature of the ionosphere in the equatorial region which are more accurate than those which have been used here.

In conclusion, it may be pointed out that the results which have been presented here, especially those pertaining to the region above the F_{2} layer, must be considered in the nature of a first attempt at the deduction of the vertical distribution of density up to extreme altitudes. It is to be expected that these values will have to be changed, more or less, as more theoretical results and experimental data become available.

Table 40

COMPOSITION assumed at the beginning of the region OF DIFFUSION EQUILIBRIUM, $h=h_{d}$

$$
\text { Lat. } 0^{\circ}: \quad \begin{aligned}
h_{d} & =500 \mathrm{~km} \\
& =310.7 \mathrm{mi} \\
& \text { Lat. } 45^{\circ}: \begin{aligned}
h_{d} & =400 \mathrm{~km} \\
& =248.5 \mathrm{mi} \\
\rho_{d} & =6.500 \times 10^{-15} \mathrm{gr} / \mathrm{cm}^{3} \\
& =1.262 \times 10^{-14} \mathrm{slug} / \mathrm{ft}^{3}
\end{aligned} \\
& \begin{aligned}
\rho_{d} & =1.120 \times 10^{-14} \mathrm{gr} / \mathrm{cm}^{3} \\
&
\end{aligned} \\
& =2.174 \times 10^{-14} \mathrm{slug} / \mathrm{ft}^{3}
\end{aligned}
$$

Element	0	N	N	He
$\%$ composition by volume	19.9994	80.0000	5×10^{-4}	1×10^{-4}
$\%$ composition by mass, $C_{x d}$	$22.221-$	$77.778-$	1.39×10^{-4}	6.0×10^{-6}
Lat. $0^{\circ}:$ partial density $\rho_{x d}, \mathrm{gr} / \mathrm{cm}^{3}$	1.444×10^{-15}	5.056×10^{-15}	9.035×10^{-21}	3.90×10^{-22}
Lat. $0^{\circ}:$ partial density $\rho_{x d}$, slug $/ \mathrm{ft}{ }^{3}$	2.804×10^{-15}	9.817×10^{-15}	1.754×10^{-20}	7.57×10^{-22}
Lat. $45^{\circ}:$ partial density $\rho_{x d}, \mathrm{gr} / \mathrm{cm}^{3}$	2.489×10^{-15}	8.960×10^{-15}	1.557×10^{-20}	6.72×10^{-22}
Lat. $45^{\circ}:$ partial density $\rho_{x d}, \operatorname{slug} / \mathrm{ft}$	4.833×10^{-15}	1.740×10^{-14}	3.023×10^{-20}	1.30×10^{-21}

Table 41

CONDITIONS AT THE BASE OF THE EXOSPHERE, $h=h$.

LATITUDE 0°

$\begin{aligned} h_{*} & =750 \mathrm{~km}, \\ & =466.0 \mathrm{mi}\end{aligned}$

$$
T_{*}=2500^{\circ} \mathrm{K}
$$

$p_{*}=1.57 \times 10^{-8} \mathrm{mb}$,
$\rho_{*}=1.083 \times 10^{-18} \mathrm{gr} / \mathrm{cm}^{3}$,
$n_{*}=4.58 \times 10^{8} \frac{1}{\mathrm{~cm}^{3}}$
$=2.103 \times 10^{-15} \mathrm{slug} / \mathrm{ft}^{3}$
$=1.30 \times 10^{12} \frac{1}{\mathrm{ft}^{3}}$

Element	0	N	He	H
Molecular weight	16.000	14.000	4.000	1.008
Partial density $\rho_{x^{*}}, \mathrm{gr} / \mathrm{cm}^{3}$	2.022×10^{-16}	8.805×10^{-18}	4.675×10^{-21}	2.796×10^{-22}
Partial density $\rho_{x^{*}}$, slug $/ \mathrm{ft}^{3}$	3.926×10^{-16}	$1.710^{26} 10^{-18}$	9.078×10^{-21}	5.429×10^{-22}
$\%$ composition by mass, $C_{x^{*}}$	18.68	81.32	4.32×10^{-4}	2.58×10^{-8}

LATITUDE 45°

$\begin{aligned} h_{*} & =650 \mathrm{~km}, \\ & =403.9 \mathrm{mi}\end{aligned}$
$T_{*}=2500^{\circ} \mathrm{K}$,
$p_{*}=1.53 \times 10^{-8} \mathrm{mb}$,
$\rho_{*}=1.055 \times 10^{-15} \mathrm{gr} / \mathrm{cm}^{3}$,
$n_{*}=4.46 \times 10^{7} \frac{1}{\mathrm{~cm}^{3}}$
$=2.049 \times 10^{-15} \mathrm{slug} / \mathrm{ft}^{3}$
$=1.26 \times 10^{12} \frac{1}{\mathrm{ft}^{3}}$

Element	0	N	N	He
Molecular weight	16.000	14.000	4.000	H
Partial density $\rho_{x^{*}}, \mathrm{gr} / \mathrm{cm}^{3}$	1.908×10^{-16}	8.636×10^{-18}	5.639×10^{-21}	3.542×10^{-22}
Partial density $\rho_{x^{*}}, 1 \mathrm{f} / \mathrm{ft}^{3}$	3.705×10^{-16}	1.677×10^{-16}	1.095×10^{-20}	6.878×10^{-22}
$\%$ composition by mass $C_{x^{*}}$	18.10	81.90	5.35×10^{-4}	3.36×10^{-5}

Table 42
ATMOSPHERIC MODEL III - VALUES OF TEMPERATURE, PRESSURE, AND DENSITY ABOVE THE F f_{2} LAyER
Latitude 0°. Engineering Units. $p_{a}=2115 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

atmospheric model ili - values of temperature, pressure, and density above the fa layer
Latitude 0°. Metric Units. $p_{a}=1013 \mathrm{mb}, \rho_{a}=1.177 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

keight				Frentage Composition by Muss					$\begin{gathered} \text { Sale } \\ \text { Height } \\ \vdots \\ \text { inm } \end{gathered}$	Pressure $\stackrel{p}{\text { millibars }}$	Pressure Ratio p / p_{c}		Density Ratio $o f o$						
		$\begin{aligned} & \text { Atomic } \\ & \text { Onyene } \end{aligned}$		AtomicNitroegen	Atomike Helium														
km	mi						*												
400	248	${ }^{865.42}$	${ }^{1800}$	33\%	N				7.21×10	2.07×10^{-7}					$1.26 \times 10^{*}$	6.74×10^{08}			
425	264.1	${ }^{859.02}$	1350					${ }_{2}^{21.60} 10$	- 8.82×10	$\left\|\begin{array}{l} 1.49 \times 10^{-7} \\ 113 \times 10^{-7} \end{array}\right\|$	1.47		$1.79 x$	5.89 $\times 10^{\circ}$	1.35×10^{8}	9.5a $\times 10^{0} 0^{\circ}$			3.17×10^{-1}
475	279.6.	${ }_{8456.45}^{854}$	1950					16.80	1.14	${ }^{9.89 \times 10}$	8,77x 100^{-12}	21	, 85×10	${ }^{\frac{4}{3,33 \times 1} \times 10^{4}}$	${ }_{\text {L }}^{1.55 \times \times 10^{5}}$. $.30 \times 10 \times 10^{\circ}$			
500	310	840.27	200	22.21	77.78	$1.39 \times 10 \cdot 4$	6.00×10^{-6}		$1.37 \times 10^{\circ}$	7.51×10^{-8}	7.41×10	. 50×10^{-28}	$4 \times$	2.74×10^{4}	. $72 \times$		$8.32 \times$		$88 \times$
						1.58×1.00	7,09 $\times 10^{-6}$	4.39	1.42×10^{4}	. 28×10^{-6}	6.20×10^{-12}		4,51 $\times 10$	$2.23 \times$	74x	$2.53 \times$	$6.87 \times$		${ }_{55} \times$
S50			${ }_{215}^{231}$	- 9.41	78.59 79.01 18.		$\xrightarrow{8.34 \times}$	${ }^{38}$	1.51	- 46×1	${ }_{4}^{5.20}$		9 $\times 1$	$1.83 \times$	76x	3.08\%	$5.70 \times$		
S00	${ }_{372}^{35}$	${ }_{816} 621$			79	2.28×10	1.13×1		1.56	+ 96×10	3.74×10^{-12}	98 $\times 10$	53×10	${ }_{1.26 \times 10^{4}}^{1.51}$	1.78 1.810°	+ ${ }^{3.73 \times 10^{4}}$	4, $01 \times$		
625	388.4	810.45	225			源		. 36		24×10^{-7}	3.20×10^{-1}	49 \times		1.05×10^{8}	1.82×10^{8}	5.38×10^{0}	. 39×10^{-1}	. 38	
650				${ }^{9.95}$		3×10^{-4}	$\times 1$		$\times 10$	$\times \times$	2, $\begin{aligned} & 2.74 \times 10^{2} \times 1 \\ & 20\end{aligned}$, $76 \times 10^{10-10}$	50×10	${ }^{8.81 \times}$	1.84				6.4 $\times 10^{-2}$
		792.85	2250	. 27	${ }^{\frac{80}{80.73}}$	\% $3 \times 10^{-0.4}$.99 \times	. 35	1750 1.10	,07 $\times 1$	${ }^{\frac{2}{2.06 \times 10}} 2$. 49×10^{-72}	$\frac{.50 \times 10^{-12}}{127 \times 10^{-12}}$, 3.30×10^{7}	$\frac{1.86 \times}{1.86 \times}$	8.97×10^{6}	年 10×1		5.53 4 (10-9
	${ }_{450}$	787. 54				3.94×10^{-4}	2.29												4,74 410^{-2}
150																	6 $\times 10^{-}$	(1) $\times 10^{\circ}$	
				12													-10		
200						${ }_{7}$	5.40×10			12×10^{-6}	10	90×10					$\times 10$		
950	59		200					4.30	1.97		5.44×10^{10}	79	. $22 \times$	$1.61 \times 10^{\prime}$	1.92×10^{8}	$3.50 \times 10^{+}$. 49	1.56×10^{7}	$\frac{1.24 \times 10^{-3}}{}$
1000			2500																
1100						58 $\times 10^{-1}$, 38×1		2.05×10^{4}	2.61×10^{-4}	10	$9 \times 10^{-}$.22 $\times 10^{-12}$	2, $61 \times$	1.38×10^{5}	$7.39 \times 10^{+}$	2.50 $\times 10^{-0^{-9}}$	3.29×10^{7}	5.86×10^{-3}
${ }^{1200}$	${ }^{7} 4$		2500	14.31	${ }^{85,68}$	2.26	2.15	14.25		$1.61 \times 10^{-}$	1.59×10^{-12}	$\times 10$. 40×10^{-14}	4.70			${ }^{10^{-9}}$	$5.32 \times$	$\frac{.6 \times 10^{-8}}{3.2 \times 10^{-8}}$
130	807.			13.53	86												.01 $\times 10$		
1400						4.36×10^{-9}	5.9		2.22×10^{3}	40×10	6.31×10^{-12}	4.38	72×10^{-24}	. 87	1.93×10^{5}	3.02×10^{8}	5.40	${ }^{34} \times 10^{0}$	
1500	932.0	640.48	250011	12.11	87, 88	6.00×10		4.21	. 28	4.11×10^{-10}	.05 $\times 10^{-1}$				$1.93 \times 10^{\circ}$	70×10^{8}	4.11×10^{-7}		25×10^{-4}
					88.51	8.19×10^{-3}		4.20					1.55×10^{-1}						
1200	1056		500	10.89		1.	1.70×10	4.18	2.44×10^{2}	.75 $\times 10^{10.20}$.73 $\times 10^{10}$	19×10^{-17}	62×10^{-14}	S. 10×10^{8}	1.93×10^{8}	$1.10 \times 10^{\circ}$, 75×10^{-4}	$4.50 \times$	
1800	1118		2500	${ }^{34}$	89.64	$1.49 \times 10^{\circ}$. 17						3.39	${ }^{6}$	0°			
	1181			9.814				4.16	. $23 \times$			30	${ }^{51}$	2.27					
	${ }^{1243}$	568.40	500	9,350	. 62	$2.63 \times$	5.21	15	59x	26×10^{-12}	$19 \times 10^{-}$	$58 \times 10^{-}$	05 $\times 10^{-1}$	$1.54 \times$	93×10	66×1	88		
${ }^{250}$	1533	59.58	2500	7.379		$9.72 \times$. 04											
		${ }_{452} .30$		5.936	3. 62	. 3105	1274	. 77	. $34 \times 10^{\circ}$										
3500	2175	407.75		4.836					93×10^{2}	32×10^{-18}		$70 \times$	$29 \times$	1.26×10^{3}			52×10	99 $\times 1$	
4000	245	369		3.947		2.186	1.616	${ }^{11.13}$. 06										
450		${ }^{336.34}$	2500	3.156	87.4		${ }_{606}$												
5000	3107			2.389			1.12	5.2					88×10^{-1}			5.33×10^{22}	5,95 $\times 10^{-8}$	37×10	34 $\times 10^{-7}$
600	3728		2500	1.010	${ }^{42.86}$	20.02		2.28											
7000	4330	${ }_{122.51}^{222}$					${ }^{60.19}$	${ }_{1}^{1.50}$	${ }^{6.24 \times 10}$	-	108 $\times 10^{-12}$	31 312			5.94				
	5992		2500	$\frac{0.43 \times 10^{-8}}{2.42 \times 1}$						\% 3×18					6,44×10.080	+10			
				8.14×10^{-3}	335		${ }_{84.19}$	1.14		11 $\times 10$	$1.29 \times 10^{-3,}$	-20 $\times 10^{-2}$		4.17	6.67 $\times 10^{\circ}$	10^{+2}	4.94 $\times 10^{10^{-3}}$		11×10^{-7}
15,000	${ }_{932} 23$							1.06		-					${ }^{6,800} \times 10^{\circ} 0^{6}$	-48 10	4.61×10		${ }^{04 \times 10^{-7}}$
		${ }^{57}$						1.04						2.36 $\times 10$	$\frac{7.12 \times 10^{6}}{}$. $86 \times \times 1$	${ }_{7} 9.9 \times$
									$6.71 \times 10^{+}$	58×10^{-1}		25×10^{-20}	76 $\times 10^{-20}$	1.92×10	$7.18 \times 10^{\circ}$	2.93×10^{18}	2.45×10^{-8}	${ }^{1.30 \times 10{ }^{10}}$	5.9 $\times 1.10^{-8}$
	21,46							1.02		10	. 08×10^{-1}					3.13×10^{10}			
			250					1.02	1.10×10^{8}					. 71					
45.00				6.08×10^{-9}			98.38	1.02	1.35×10^{6}	. 62×10^{-10}	. 54×10^{-80}	. 76×10^{-32}	34×10^{-20}	$1.64 \times$	$7.20 \times$				
50,0	31,068	12.55		$\times 10^{-2}$	1.76×10^{-8}	1.168	98.53	1.02											
,000	34,175	10.59	2500			1.352	. 65	1.02	$1.93 \times 10^{\circ}$			29 510				3.65×10^{4}	$97 \times 10^{\circ}$		${ }^{44 \times 10^{-9}}$
60.000	37.2	9.06	250			1.261	8. 74	1.02		.15 $\times 10$. 08×10							66 \times	$4.34 \times$

1 millibar $=10^{2}$ dynes $/ \mathrm{cm}^{4}=0.750 \mathrm{~mm}$ of h

Table 44
atmospheric model ili - values of temperature, pressure, and density above the fa layer
Latitude 45°. Engineering Units. $p_{a}=2116 \mathrm{lb} / \mathrm{ft}^{2}, \rho_{a}=2.286 \times 10^{-3} \mathrm{slug} / \mathrm{ft}^{3}$

Latitude, 45°. Metric Units. $p_{a}=1014 \mathrm{mb}, \rho_{a}=1.223 \times 10^{-3} \mathrm{gm} / \mathrm{cm}^{3}$

Height			$\begin{gathered} \text { Temp } \\ r \\ { }_{\mathrm{K}} \end{gathered}$	Percentage Composition by Mass				$\left[\begin{array}{c} \text { Mean } \\ \text { Mol } w_{2} \\ n \end{array}\right.$	Scole Height	Pressure $\underset{\text { millibars }}{p}$	Presaura Ratio p / p_{s}	Density $\stackrel{\rho}{\mathrm{gram} / \mathrm{cm}^{2}}$	Denaity Pacio $\stackrel{G}{p}$	$\left\|\begin{array}{c} \text { Nomber } \\ \text { Density } \\ n \\ \text { particles } / \mathrm{cm}^{\mathrm{a}} \end{array}\right\|$	Hean Parti- cle Speed $\mathrm{cm} / \mathrm{sec}$	$\mathrm{d}=2 \times 10^{-8 \mathrm{~cm}}$		d.3 $\times 10^{-8} \mathrm{~cm}$	
		Mean Free Pach L $c m$						Mean Collision Freq $1 / \mathrm{sec}$								$\begin{gathered} \text { Mean Frree } \\ \text { Path } \\ L \\ \mathrm{~cm} \end{gathered}$			
kn	mi^{-1}			$\begin{aligned} & \text { Atomic } \\ & \text { Onygen } \end{aligned}$	Nitrogen	At Gmie Heliun	Hydrogen												
300	186	89	1100	30.5\%				24	4.2	4.84×10^{-7}	4.78×10^{-10}	1.2	1.05×10^{-10}	3.21	9.78×10^{4}	1.76×10^{6}	5.56×10^{-1}	7.79×10^{4}	1.2
325	201.	887.39	120					21.86	5.14×10	$2.85 \times 10^{-}$	2.81×10	6.24×10^{-1}	5.09×10^{-11}	$1.73 \times 10^{\circ}$	$1,08 \times 10^{\circ}$	$3,26 \times 10^{\text {a }}$	3.30×10^{-4}	1.45×10^{6}	. 46×10^{-1}
350	217	880.77	1300					19.38	$6,33 \times 10$	1.84×10^{-7}	1.82×10^{-1}	3.29×10^{-1}	2.68×10^{-12}	$1.03 \times 10^{*}$	1.19×10^{8}	. 48×10^{8}	2.18×10	2.33 $\times 10^{\text {a }}$	
325	233.0	874.22	140					16.89	7.88×10	1.29×10^{-7}	1.27×10^{-10}	1.87×10^{-14}	. 52×10^{-12}	6.70 $\times 10^{\text {a }}$	$1.32 \times 10^{\circ}$	8.42×10^{6}	$1.57 \times 10^{-}$	3.73×10^{6}	$\frac{1}{3.55 \times 10^{-1}}$
400	248.5	867.75	15002			39×10^{-4}	$6.00 \times$	14.40	9.98×10	9.70×10^{-7}	8.57×10^{-12}	1.12×10^{-14}	9.14×10^{-12}	$4.72 \times 10^{\text {E }}$	1.48×10^{6}	1.20×10^{0}	1.24×10^{-2}	5.30×10^{8}	2.80×10^{-1}
485	264.2	861.35	16002	21.64	8, 36	1.65×10^{-4}	7.51×10^{-8}	14.39	1.07×10^{8}	7.62×10^{-8}	7.52×10^{-41}	8. $24 \times 10^{-}$	6.74×10^{-1}	3.48×10^{8}	1.53×10^{8}	$\frac{1.62 \times 10^{\text {a }}}{}$	9.45 $\times 10^{-2}$	7.20×10^{5}	2.13×10^{-1}
450	279.6	855.01	1700	21.13	78.87	1.95×10^{-4}	9.26×10^{-6}	14,38	1.15×10^{4}	6.09×10^{-6}	6.01×10	$6.20 \times 10^{-}$	5.07×10	2.61×10^{8}	1.58×10^{8}	$2.16 \times 10^{\circ}$	7.32×10^{-2}	$9.57 \times 10^{-}$	1.65 $\times 10^{-1}$
475	295.1	848.75	1800	20.64	79.36	2.27×10^{-4}	1.13×10^{-6}	14.37	$1.23 \times 10^{\text {a }}$	4.94×10^{-8}	4.87×10^{-1}	$4.74 \times 10^{-}$	$3.88 \times 10^{-}$	2.00×10^{6}	1.63×10^{8}	2.82×10^{8}	5.78×10^{-2}	$1.25 \times 10^{\circ}$	1.30×10^{-1}
500	310.7	842.75	1900	20.20	79.80	2.62×10^{-4}	1.35×10^{-8}	14.36	1.30×10^{4}	4.06×10^{-8}	4.01×10^{-82}	3.59×10^{-10}	3.01×10^{-38}	$1.56 \times 10^{*}$	1.67×10^{6}	$3.63 \times 10^{\circ}$	4.62×10^{-2}	$1.61 \times 10^{*}$	1.04×10^{-1}
525	326.2	836,42	200	19.78	80.22	2.99×10^{-4}	1.61×10^{-8}	14.35	1.38×10^{2}	3.37×10^{-8}	3.32×10^{-11}	2.91×10^{-18}	2.38×10^{-12}	1.23×10^{8}	1.72×10^{6}	4.60×10^{4}	3.74×10^{-2}	$2.04 \times 10^{\text {a }}$	8.43 $\times 10^{-7}$
550	341.8	830.36	2100	19.40	80.60	3.40×10^{-4}	1.89×10^{-6}	14.35	$1.47 \times 10^{3} 3^{2}$	2.83×10^{-6}	2.79×10^{-9}	2.32×10^{-28}	1.90×10^{-12}	9.82×10^{7}	1.76×10^{6}	$5,75 \times 10^{n}$	3.06×10	2.55×10^{4}	6.91×10^{-4}
575	357.3	824.36	2200	19.04	80.\%	3.83×10^{-4}	$2.21 \times 10^{-}$	14.34	$1.55 \times 10^{2} 2$	2.40×10^{-3}	2.37×10^{-28}	1.88×10^{-18}	1.54×10^{-13}	$7.94 \times 10^{+}$	$1.80 \times 10^{\circ}$	7.11×10^{8}	2.54×10^{-8}	3.15×10^{8}	
600	372.8	819.43	230	18.70	81.30	4.29×10^{-4}	2.56×10^{-8}	14.33	$1^{1.63 \times 10^{9}}{ }^{2}$	2.05×10^{-8}	2.02×10^{-11}	1.54×10^{-18}	1.26×10^{-12}	6.49×10^{7}	1.84×10^{86}	8.69×10^{8}	$2.12 \times 10^{-}$	3.85×10^{8}	4.79 $\times 10^{-7}$
625	388.4	812.56	2400	18.39	61	4.79×10^{-4}	2.94×10^{-8}	14.33	1.77 $\times 10^{20} 1$	1.76×10^{-8}	1.74×10^{-14}	1.27×10^{-18}	1.04×10^{-10}	5.36×10^{7}	1.88×10^{8}	1.05×10^{2}	1.79×10^{-2}	4.66×10^{6}	4.04×10^{-8}
650	403.9	1006. 75	2500	18.16	81.90	5.35×10^{-4}	3.36×10^{-8}	14.32	$1.80 \times 10^{8} 1$	1.53×10^{-8}	1.51×10^{-11}	1.05×10^{-18}	3.62 $\times 10^{-10}$	4.66×10^{7}	1.92×10^{8}	1.26×10^{7}	1.52 $\times 10^{-2}$	5.60×10^{8}	3.43 $\times 10^{-7}$
20	433,0	795.40		17.53	82.47	6.53×10^{-1}	4.34 $\times 10^{10^{-6}}$	14.31	1.83×10^{2}	1.16×10^{-8}	1.14×10^{-12}	$8.00 \times 10^{-20} 0^{6}$	6.54 $\times 10^{-13}$	$3.39 \times 10^{\circ}$	1.92×10^{8}	1.66×10^{7}	1.16×10^{-2}	7.38×10^{8}	2.60×10^{-7}
750	466.0	784.28	2500	16.98	83.01	7.95×10^{-4}	5.60×10^{-8}	14.30	1.85 $\times 10^{8} 8$	$8.85 \times 10^{\circ}$	8.73×10^{-28}	6.09×10^{-2}	4.98×10^{-1}	2.58×10^{7}	$1.92 \times 10^{\circ}$	$2.18 \times 10^{*}$	$8.83 \times 10^{-}$	9.69×10^{6}	1.99×10^{-3}
800	497	773.39	2500	16.47	83.53	9.64×10^{-4}	7.18×10^{-6}	14.29	1.88×10^{2}	6.77×10^{-9}	6.68 510^{-12}	4.65×10^{-10}	3.81×10^{-15}	$1.98 \times 10^{+}$	$1.92 \times 10^{\circ}$	2.85×10^{2}	6.75×10^{-2}	1.27×10^{7}	1.52×10^{-1}
850	528.2	762.73	2500	15.96	84.03	1.17×10^{-8}	9.19×10^{-8}	14.28	1.91×10^{2}	5.20×10^{-6}	5.13×10^{-12}	$3.57 \times 10^{-18}{ }^{-10}$	2.92×10^{-19}	1.52×10^{7}	1.92×10^{8}	3.71×10^{7}	5.19×10^{-3}	1.55×10^{7}	1.17×10^{-3}
900	559.2	752.29	2500	15.48	84.52	1.41×10^{-3}	1.17×10^{-4}	14.28	1.94×10^{8}	4.01×10^{-1}	3.96×10^{-18}	2.75×10^{-18}	2.25×10^{-1}	1.17×10^{2}	1.93×10^{6}	4.81×10^{7}	4.00×10^{-2}	2.14×10^{7}	9.01×10^{-4}
950	590.3	742.06	2500	15.02	84.98	1.69×10^{-3}	1.49×10^{-9}	14.27	$1.96 \times 10^{2} 3$	3.10×10^{-8}	3.06×10^{-13}	2.13×10^{-10}	. 74×10^{-18}	9.05 $\times 10^{\circ}$	1.93×10^{8}	6.22×10^{7}	3.10×10^{-2}	2.76×10^{7}	6.97 $\times 10^{-3}$
1000	621.4	${ }^{732.04}$	2500	14.57	${ }^{35} 5.48$	2.03×10^{-3}	1.88×10^{-0}	14.26	$1.99 \times 10^{2}{ }^{2}$	2.41×10^{-9}	2.38×10^{-12}	1.65×10^{-18}	1.35×10^{-28}	7.03×10^{6}	$1.93 \times 10^{\circ}$	8.01×10^{7}	2.41×10^{-9}	3.56×10^{7}	5.42×10^{-8}
1100	683.5	712. 59	2550	13.73	86.27	2.91×10^{-3}	2.89×10^{-9}	14.24	2.05×10^{2}	1.47×10^{-8}	1.45×10^{-12}	1.01×10^{-16}	8.22×10^{-14}	$4.28 \times 10^{*}$	1.93×10^{8}	$1.31 \times 10^{*}$	1.47×10^{-2}	5.84×10^{7}	3.30×10^{-6}
1200	745	693.91	2500	12.94	87.05	4.11×10^{-3}	4.67×10^{-4}	14.23	$2.10 \times 10^{2} 0$	9.07×10^{-80}	8.95×10^{-13}	6.21×10^{-11}	5.08×10^{-14}	2.65×10^{6}	$1.93 \times 10^{\circ}$	2.13×10^{8}	9.07×10^{-4}	4.45×10 ${ }^{\text {a }}$	3.04×10^{-9}
1300	807.8	679.96	2500	12.22	87.78	5.77×10^{-3}	7.23 $\times 10^{-8}$	14.21	$2.16 \times 10^{2} 5$	5.68×10^{-1}	5.60×10^{-7}	3,88 $\times 10^{-17}$	3.17×10^{-14}	1.56×10^{8}	1.93×10^{6}	3,40 510^{8}	5.68×10^{-4}	1.51×10^{2}	1.28×10^{-7}
1400	869.9	658.69	2500	11.55	88.44	8.01×10^{-3}	$1,11 \times 10^{-3}$	14.20	2.22×10^{2}	3.60×10^{-10}	3.55×10^{-18}	2.46×10^{-17}	2.01×10^{-14}	$1.05 \times 10^{\circ}$	1.93×10^{8}	5.36×10^{4}	3.60×10^{-1}	2.38×10^{8}	8.11×10^{-4}
1500	932	642.07	2500	10.92	89.06	1.10×10^{-4}	1.67×10^{-8}	14.19	2.28×10^{2}	2.31×10^{-10}	2.28×10^{-10}	1.58×10^{-27}	1.29×10^{-14}	$6.73 \times 10^{*}$	$1.93 \times 10^{\circ}$	$8.36 \times 10^{\text {e }}$	2.31×10	$3.71 \times 10^{\circ}$	5.20×10^{-4}
1600	994	626.08	250	10.34	89.64	1.51) 10^{-8}	2.50×10^{-3}	14.17	$2.34 \times 10^{4}{ }^{2}$	1.50×10^{-10}	1.48×10^{-10}	1.02×10^{-17}	8.35×10^{-18}	4.37×10^{6}	1.93×10^{8}	1.29×10^{4}	$1.50 \times 10^{-}$	$5.72 \times 10^{\circ}$	3.38 $\times 10^{-4}$
1700	1056	610.64	2500	9.604	90.17	2.04×10^{-2}	3.70×10^{-3}	14.16	2.40×10^{2}	9.83×10^{-17}	9.70×10^{-14}	6.69×10^{-18}	$5,47 \times 10^{-18}$	$2.87 \times 10^{\circ}$	$1.93 \times 10^{\circ}$	$1.96 \times 10^{*}$	${ }_{9.85} \times 10^{-1}$	8.72×10^{1}	3.22×10^{-4} $2.28 \times 1{ }^{-1}$
2000	1243	567.73		8.397	${ }^{91.54}$	4.44×10^{-2}	1.13×10^{-2}	14.11	$2,60 \times 10^{8} 2$	2.96×10^{-14}	$\frac{2.52 \times 10^{-14}}{478 \times 10^{-18}}$	2.01×10^{-18}	$\frac{1.64 \times 10^{-18}}{2.58}$	8.62×10^{4}	1.94 $\times 10^{6}$	6, 52 $\times 10^{6}$	2.97×10^{-8}	2.90×10^{2}	6.68×10^{-5}
2500	1553	505.59					6.15×10^{-2}		$2.95 \times 10^{9}{ }^{4}$	4.84×10^{-12}	4.78×10^{-18}	3.25×10^{-18}	2.65×10^{-10}	$1.41 . \times 10^{4}$	1.95×10^{60}	3.99 $\times 10^{16}$	4.89×10^{-6}	1.77×10^{12}	1.10×10^{-8}
3000	18	453.12	2500	5.286	${ }^{93.87}$. 5699	. 2767	13.42	$3.42 \times 10^{2}{ }^{5}$	5, 96×10^{-18}	9.83×10^{-18}		5.26×10	$2.90 \times 10^{\text {a }}$		1.94×10^{12}	1.02×10^{-8}	8.61×10^{10}	2.31×10^{-8}
3500	2175	408.41	2500	4.262	93.10	1.591	1.052	11.96	4.25×10^{2}	$2.64 \times 10^{-19}{ }^{19}$	2.60×10^{-10}	$\underline{1.52 \times 10^{-20}}$	1.24×10^{-1}	$7.72 \times 10^{*}$	2.10×10^{0}	. 29×10^{21}	2.88×10^{-4}	3.24×10^{11}	6.49×10^{-7}
${ }^{4000}$	2785	370.01	2500	${ }^{3.392}$	${ }^{89} 3.38$	${ }^{3.887}$	3.402	${ }_{9}^{9.14}$	6.14×10^{3}	9.75 $\times 10^{-18}$	9.62×10^{-11}	4.29×10^{-73}	3.50 $\times 10^{-18}$	2.24×10^{8}	2.41×10^{5}	1.98x 3010^{14}	1.22×10^{-7}	8.80×10^{12}	2.74×10^{-7}
4500	2796	336.78	2500	2.566	80.10	8.148	9.194	5.87	$1.05 \times 10^{8} 5$	5.16×10^{-84}	5.09×10^{-17}	1.46×10^{-83}	1.19×10^{-14}	$1.50 \times 10^{*}$	3.00×10^{8}	$3.74 \times 10^{2 x}$	$8.03 \times 10^{-}$	1.66×10^{1}	1.81×10^{-9}
5000	3107	307. 84	2500	1.757	64.92	14.13	20.10	3.55	$1.90 \times 10^{\circ}$	$\frac{3.60 \times 10^{-14}}{}$	3.55×10^{-1}	6.16×10^{-22}	5.04×10^{-18}	1.05×10^{2}	$3.86 \times 10^{\circ}$	5.35×10^{18}	7.21×10^{-4}	2.38×10^{12}	1.62×10^{-7}
${ }^{6000}$	3729 4350	260.11 22.68	2500 2500	15616 1378	${ }^{266.86}$	23.13	49.44 68.80	1.76	4.54 $\times 10^{10^{\circ}}$	2.58 ${ }^{2.58} 10^{-14}$	2.55×10^{-17}	2.18× 10^{-28}	1.78×10^{-18}	7.52×10	5.48×10^{8}	7.49×10^{18}	7.32×10^{-2}	3.33 $\times 10^{12}$	1.65×10^{-7}
7000	4350	${ }^{222.68}$	2500	1378	8.306	22,76	68.80	1.35	6.99×10^{9}	2.15×10^{-14}	2.12×10^{-17}	$1,40 \times 10^{-88}$	1.14×10^{-18}	6.27×10	$6.26 \times 10^{\circ}$	8.98×10^{18}	6.97×10^{-8}	3.99×10^{2}	1.57×10^{-7}
8600			250	$3.51 \times$	2.584	19.18	188.20	1.21	8.91×10^{8}	1.91×10^{-14}	1.88×10^{-17}	1.11×10^{-82}	9.09×10^{-80}	5.57×10	6.61×10^{8}	1.01×10^{12}	6.54×10^{-2}	$4.49 \times$	1.47×10^{-7}
9000	5592	168.53	2500	1.02×10^{-3}	. 8932	15.78	${ }^{83} .32$	1.15	1.07 $\times 10^{4}{ }^{1}$	1.72×10^{-14}	1.70×10^{-17}	9.55×10^{-85}	7.81×10^{-80}	5.02×10	6.77×10^{8}	1.12×10^{19}	6.04×10^{-7}	4.98×10^{1}	1.36×10^{19}
10,000	6214	148.58	2500	3.38 $\times 10^{-7}$	${ }^{.3451}$	13.12	${ }^{86.53}$	1.12	$1.25 \times 10^{0}{ }^{1}$	1.58×10^{-14}	1.56×10^{-17}	$8.52 \times 10^{-4.5}$	6,96 $\times 10^{-20}$	4.61×10	6.87×10^{8}	${ }^{1.22 \times 10^{12}}$	5.62×10^{-8}	5.43×10^{10}	1.26×10^{-7}
15,000		87.21	2500	6.05×10^{-6}	1.07×10^{-2}	6,234	93, 76	1.06	2.25×10^{4}	1.17×10^{-24}	1.25×10^{-14}	5.97×10^{-83}	4.88×10^{-20}	3.42×10	7.08×10^{2}	$\frac{1.64 \times 10^{13}}{1.65}$	4.30×10^{-6}	7.31×10^{28}	9.68×10^{-4}
${ }^{20,000}$	12.427	57.28	2500	4.85×10^{-7}	1.20×10^{-8}	3.847	${ }^{96.23}$	1.04	$3.50 \times 10^{4}{ }^{9}$	9,82 $\times 10^{-18}$	9.69×10^{-18}	4.90×10^{-206}	4.00×10^{-20}	2.85×10	7.14×10^{0}	1.96×10^{11}	3.64×10^{-6}	8.73×10^{8}	8.18×10^{-1}
25.000	15,534	40.48	2500	2. 64×10^{-7}	2.70×10^{-6}	2.749	97.25	1.03	4.99×10^{4}	8.71×10^{-18}	8.59×10^{-10}	4.31×10^{-3}	3.53×10^{-30}	2.54×10	$7.17 \times 10^{\circ}$	2.21×10^{12}	$3.24 \times 10^{-}$	9,84 $\times 11^{14}$	7.29×1
30,000	18,541	30.12	2500	2.47×10^{-7}	9.12×10^{-8}	2,152	97.85	1.02	6.74×10^{4} ?	7.90×10^{-18}	7.79×10^{-18}	3.94×10^{-30}	3.22×10^{-80}	2.33×10	7.19×10^{5}	2.41×10^{1}	2.98×10^{-2}	1.07×10^{22}	6.70×10^{-1}
35,000	21,748	${ }^{23.28}$	2300	9.54×10^{-6}	4.00×10^{-8}	1.785	98.21	1.02	$8.74 \times 10^{4} 7$	7.49×10^{-18}	7.39×10^{-18}	3.68 $\times 10^{-83}$	3.01×10^{-40}	2.18×10	7.20×10^{8}	2.58×10^{13}	2.79×10^{-6}	1.15×10^{3}	6.28×10^{-8}
40,000	24,855	18.53	2500	4.52×10^{-8}	2.10×10^{-8}	1.541	98.46	1.02	1.10×10^{6}	7.11×10^{18}	$7.01 \times 10^{\circ \times 2}$	3.49×10^{-22}	2.85×10^{-8}	2.08×10	$7.20 \times 10^{\circ}$	2.71×10^{13}	2.66×10^{-1}	1.21×10^{18}	5.98×10^{-1}
45,000	27,965	15.10.	2500	2.48×10^{-8}	$\frac{1.24 \times 10^{-8}}{811 \times 10^{-8}}$	1.369	98.63	1.02	$\frac{1.35 \times 10^{\circ}}{} 1.6$	$6.83 \times 10^{-18} 6$	6.74×10^{-18}	3.34×10^{-88}	2.73×10^{-20}	1.99×10	$\frac{7.21 \times 10^{8}}{7.208}$	2.82×10^{13}	2.55×10^{-3}	1.26×10^{13}	5.74×10^{-8}
50,000	31,069	12.54	${ }^{2500}$	1.51 $\times 10^{-6}$	8.11×10^{-8}	1.241	98.76	1.02	$1.63 \times 10^{6}{ }^{6}$	$6^{6,60 \times 10^{-18}} 6$	6.51 $\times 10^{-18}$	3.23×10^{-12}	2.64×10^{-20}	1.93×10	7.21×10^{8}	2.92×10^{19}	2.47×10^{-1}	1.30×10^{10}	5.56×10^{-7}
55,000	34,175	10.58	2500	9.98 $\times 10^{-8}$	5.66×10^{-6}	1,144	${ }^{98.86}$	1.02	$1.93 \times 10^{*}{ }^{6} 6$	$6.42 \times 10^{-10} 0$	6.33×10^{-18}	3.14×10^{-2}	2.57×10^{-20}	1.87×10	$7.22 \times 10^{*}$	3.01×10^{29}	$2.40 \times 10^{-*}$	1.34×10^{12}	5.40×10^{-8}
60,000	37,282	9.05	250	7.02×10^{-9}		1.067	99.93	1.02	$2.26 \times 10^{8} 8$	6.27×10^{-18}	6.19×10^{-16} 5	$3.06 \times 10^{3.58}$	2,50 110^{-20}	1.83×10	7.22×10^{6}	3.08×10^{11}	$2.34 \times 10^{-}$	1.37×10^{2}	5.28×10^{-8}
70.000	43,49\%	6.83	2500	$3.99 \times 10^{-}$	2.55×10^{-8}	. 9536	99.85	1.02	3,00	03	. 95	2.94	$2.41 \times 10^{-}$	1.76×10	7.22×10^{6}	$320 \times 10^{* *}$	2.26 $\times 10^{-4} \mid$	$1,42 \times 10^{12}$	5.08×10^{-6}

ATMOSPHERIC MODEL II-VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM THE F_{2} LAYER UP TO 1000 MILES AT LATITUDE 0°. ENGINEERING UNITS.

Fig. 33

ATMOSPHERIC MODEL III-VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM THE F_{2} LAYER UP TO 1600 KM AT LATITUDE 0°. METRIC UNITS.

FIG. 34

atmospheric model ili-vertical distribution of the density ratio σ FROM THE F_{2} LAYER UP TO 1000 MILES AT LATITUDE 45° ENGINEERING UNITS.
fig. 35

ATMOSPHERIC MODEL III-VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM THE F_{2} LAYER UP TO 1600 KM AT LATITUDE 45° METRIC UNITS.

FIG. 36

ATMOSPHERIC MODEL II-VERTICAL DISTRIBUTION OF THE TEMPERATURE AND COMPOSITION FROM THE F_{2} LAYER UP TO 1000 MILES. ENGINEERING UNITS.

ATMOSPHERIC MODEL II-VERTICAL DISTRIBUTION OF THE TEMPERATURE
AND COMPOSITION FROM THE F_{2} LAYER UP TO 1600 KM . METRIC UNITS,
FIG. 38

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ FROM SEA LEVEL UP TO 120 KM . LATITUDE 45°.

FIG. 39

VERTICAL DISTRIBUTION OF MEAN MOLECULAR WEIGHT FROM SEA LEVEL UP TO THE F_{2} LAYER. LATITUDE 45°.

FIG. 40

VERTICAL DISTRIBUTION OF TEMPERATURE ABOVE THE F F_{z} LAYER FOR MODELS I, II, AND III AT LATITUDE 45. METRIG UNITS

VERTICAL DISTRIBUTION OF THE DENSITY RATIO σ ABOVE THE F_{2} LAYER FOR MODELS I,II,AND III AT LATITUDE 45°

PLOT SHOWING THE SMALL EFFECT OF THE VALUE USED FOR M M_{L} DETERMining THE VERTICAL DENSITY DISTRIBUTION FOR MODEL I. LATITUDE 0°.

FIG. 44

REFERENCES

(1) Sänger, E., Gaskinetik sehr hoher Fluggeschwindigkeiten, Deutsche Luftfahrtforschung, Forschungs Bericht 972, Berlin, 1938, Douglas Aircraft Company, Inc., Translation F.R. 369.
(1a) Sänger, E., and Bredt, J., A Rocket Drive for Long Range Bombers, Deutsche Luftfahrtforschung, Untersuchengen u. Mitteilunger Nr. 3538, 1944, Bureau of Aeronautics, Navy Department, Washington, D.C., Translation CGD-32.
(2) Tsien, H.S., "Superaerodynamics, Mechanics of Rarefied Gases," Journal of the Aeronautical Sciences, Vol.13, p.653, No.12, December, 1946.
(3) Berkner, L.V., Terrestrial Magnetism and Electricity, in Fleming, J.A., editor, Physics of the Earth - VIII, New York: McGraw-Hill Book Company, Inc., Chap.9, 1939.
(4) Hulburt, E.O., Terrestrial Magnetism and Electricity, in Fleming, J.A., editor, Physics of the Earth - VIII, New York: McGraw-Hill Book Company, Inc., Chap. 10, 1939.
(5) Mitra, S.K., "Report on the Present State of Our Knowledge of the Ionosphere," Proc. of the National Institute of Sciences of India, Vol.1, No.3, Calcutta, 1935.
(6) Millington, G., Fundamental Principles of Lonospheric Transmission, Part I, Baddow Report 990, British Admiralty, September, 1943.
(7) Diehl, W.S., Standard Atmosphere--Tables and Data, NACA Technical Report No. 218, 1925 and 1940.
(8) Bjerknes, V., et al., "Hydrodynamique Physique," Les Presses Universitaires de France, Paris, Vol.3, pp.684-687, 1934.
(9) Haurwitz, B., "The Physical State of the Upper Atmosphere," Reprinted from the Journal of the Royal Astronomical Society of Canada, Toronto, 1941.
(10) Penndorf, R., "The Temperature of the Upper Atmosphere," Bulletin of the American Meteorological Society, Vol.27, p.331, June, 1946.
(11) Penndorf, R., The Constitution of the Stratosphere, Bulletin of the American Meteorological Society, Vol.27, p.343, June 1946.
(12) Gutenberg, B., "Physical Properties of the Atmosphere up to 100 km ," Journal of Meteorology, Vol.3, p.27, June, 1946.
(13) Warfield, C.N., Tentative Tables for the Properties of the Upper Atmosphere, NaCA Technical Note No. 1200, January, 1947.
(14) Appleton, E.V., "The Upper Atmosphere--The Structure of the Atmosphere as Deduced From Ionosphere Observations," Quart. Jour. Roy. Het. Soc., Vol.65, pp.324-328, 1939.
(15) Chapman, S., and Bartels, J., Geomagnetism, Oxford: Clarendon Press, Vol.1, Chap. 15, 1940.
(16) Appleton, E.V., "A Method of Measuring the Collisional Frequency of Electrons in the Ionosphere," Nature, Vol.135, 1935.
(17) Eckersley, T.L., "Collision Frequency and Molecular Density in the F_{1} layer of the Ionosphere, " Nature, Vol. 135, p.435, 1935.
(18) Farmer, F.T., and Matcliffe, J.A., "Measurements of the Absorption of Wireless Waves in the Ionosphere," Proc. Roy. Soc., Vol.A151, pp.370-383, 1935.
(10) Farmer, F.T., and Ratcliffe, J.A., "Frequency Collision of Electrons in the Ionosphere," Nature, Vol.135, p.585, 1935.
(20) Fuchs, J., Eine Radio-Methode zur Bestimmung der Absoluttemperatur der Ionosphäre. Meteorologische Zeitschrift, Band 53, p.41, February, 1936.
(21) Martyn, D.F., and Pulley, O.O., "The Temperatures and Constituents of the Upper Atmosphere," Proc. Roy. Soc., Vol.Al54, p. 482, 1936.
(22) Godfrey, G.H., and Price, W.L., "Thermal Radiation and Absorption in the Upper Atmosphere," Proc. Roy. Soc., Vol.Al63, p.228, 1937.
(23) Das, A.K., "On the Temperature of the Earth's Outer Atmosphere and the Forbidden OI Lines of the Night-Sky Spectrum," Gerlands Beiträge zur Geophysik, Vol.47, p.136, 1936.
(24) Senda, K., "Über die Temperatur der ultrahohen Atmosphäre nach der Dissoziationstheorie," Jour, Shanghai Science Institute, Section I, Vol.l, p.163, 1938.
(25) Bhar, J.N., "Stratification of the Ionosphere and the Origin of the E_{1} Layer," Indian Jour. of Physics, Vol.12, p.364, 1938.
(26) Penndorf, R., "Die Ionosphärentemperaturen," Die Naturwissenschaften, Band 28, p.751, 1940.
(27) Berkner, L.V., and Wells, H.W., "F-Region Ionosphere Investigations at Low Latitudes," Terr. Mag., Vol. 39, p.215, 1934.
(28) Zenneck, J., Physik der hohen Atmosphäre--Ergebnisse der kosmischen Physik, Band III, Leipzig: Akademische Verlagsgesellschaft, M.B.H., p. 32, 1938.
(29) Joos, G., Theoretical Physics, New York: G.E. Stechert \& Company, Chap. 34, 1934.
(30) Paneth, F.A., "Composition of the Upper Atmosphere--Direct Chemical Investigation," Quart. Jour. Roy. Met. Soc., Vol.65, pp.304-310, 1939.
(31) Chapman, S., "The Upper Atmosphere--Spectroscopic and Other Evidence as to Chemical Composition and Dissociation," Quart. Jour. Roy. Met. Soc., Vol.65, pp. 310-319, 1939.
(32) Penndorf, R., "Die Zusammensetzung der Luft in der hohen Atmosphäre," Meteorologische Zeitschrift, Vol.55, p.30, 1938.
(33) Wulf, O.R., and Deming, L.S., "On the Production of the Ionospheric Regions E and F and the Lower Altitude Ionization Causing Radio Fade-Outs," Terr. Mag., Vol.43, pp. 283-298, 1938.
(34) Cowling, T.G., "The Electrical Conductivity of an Ionized Gas in a Magnetic Field With Applications to the Solar Atmosphere and the Ionosphere," Proc. Roy. Soc., Vol.Al83, pp. 470-474, 1945.
(35) Mitra, S.K., and Rakshit, H., "Distribution of the Constituent Gases and Their Pressures in the Upper Atmosphere," Indian Journal of Physics, Vol.12, p.6, 1938.
(36) Regener, E., The Structure and Composition of the Stratosphere, AAF Translation No. 509, Wright Field, Dayton, Ohio, 1946.
(37) Pekeris, C.L., "The Vertical Distribution of Ionization in the Upper Atmosphere," Terr. Mag., Vol.45, p. 205, 1940.
(38) Tsien, H.S., and Schamberg, R., "Propagation of Plane Sound Waves in Rarefied Gases," Jour. of Acoustical Soc. of America, Vol.18, No.2, p.334, October, 1946.
(39) Goldberg, L., and Aller, L.H., Atoms, Stars, and Nebulae, Philadelphia: The Balkiston Company, p.197, 1943.
(40) Ledoux, P., "A Summary of the Symposium on Interstellar Lines at the Yerkes Observatory," Popular Astronomy, No.490, p. 513, December, 1941.
(41) Struve, O., "The Physical State of the Interstellar Gas Clouds," Proc. Nat'l. Acad. Sci., Vol.25, p. 36, 1939.
(42) Spitzer, L., Jr., "The Dynamics of the Interstellar Medium II," Astrophys. J., Vol.95, No.3, p.329, 1942.
(43) Swings, P., "Considerations Regarding Cometary and Interstellar Molecules," Astrophys. J., Vol.95, p. 270, 1942.
(44) Eddington, A., Internal Constitution of the Stars, Cambridge: University Press, pp. 373-377, 1926.
(45) Jeans, J.H., "On Radiative Equilibrium and the Rotation of Astronomical Masses," Monthly Notices of the Roy, Astr. Soc., Vol.86, p.328, 1926.
(46) Lindemann, F.A., "Discussion on the Constitution of the Upper Atmosphere," Quart. Jour, Roy. Met. Soc., Vol.65, p.332, 1939.
(47) Ferraro, V.C.A., "Diffusion of Ions in the Ionosphere," Terr. Mag., Vol.50, No.3, p.215, September, 1945.
(48) Jones, H. Spencer, "The Atmospheres of the Planets," Quart. Jour. Roy. Met. Soc., Vol.68, p.121, April, 1942.
(49) Saha and Srivastava, Treatise on Heat, Calcutta: The Indian Press, Ltd., p. 695, 1935.
(50) Saha, M.N., and Saha, N.K., A Treatise on Modern Physics, Calcutta: The Indian Press, Ltd., Vol.1, p.628, 1934.
(51) Hewson, E.W., "A Survey of the Facts and Theories of the Aurora, " Reviews of Modern Physics, Vol.9, p. 422, October, 1937.
(52) Langer, R.M., Physical Review, Vol.55, p.423, 1939.
(53) Jeans, J.R., The Dynamical Theory of Gases, Cambridge: University Press, Chap. 15, 1925.
(54) Bjerknes, V., "On the Dynamics of the Circular Vortex With Applications to the Atmosphere and Atmospheric Vortex and Wave Motions," Geofysiske Publicationer, Vol.2, No. 4,Kristiania, Vol.2, No.4, 1921.
(55) Bryan, G.H., "The Kinetic Theory of Planetary Atmospheres," Phil. Trans. of the Roy. Soc. of London, Series A, Vol.196, p.1, 1901.
(56) Milne, E.A., "The Escape of Molecules From an Atmosphere, With Special Reference to the Boundary of a Gaseous Star," Transactions of the Cambridge Philosophical Society, Cambridge: University Press, Vol. 22, No. 26, pp.483-517, 1923.
(57) Kennard, E.H., Kinetic Theory of Gases, New York: McGraw-Hill Book Company, Inc., 1931.
(58) Loeb, L.B., The Kinetic Theory of Gases, New York: McGraw-Hill Book Company, Inc., p.220, 1934.
(59) Cobine, J.D., Gaseous Conductors, New York: McGraw-Hill Book Company, Inc., p. $22,1941$.
(80) Vassy, A., and Vassy, M.E., "La Temperature de la Haute Atmosphere," Le Journal de Physique et le Radium, Serie VIII, Tome III, pp.14-15, January, 1942.
(61) Spitzer, L., Jr., The Terrestrial Atmosphere Above 400 Kilometers, Symposium on Planetary Atmospheres held at Yerkes Observatory, 1947.
To appear in a centennial volume of the Yerkes Observatory.
(62) Herzberg, G., Atomic Spectra and Atomic Structure, Dover Publications, 1944.
(63) Bacher, R., and Goudsmit, S., Atomic Energy States. New York: McGraw-Hill Book Company, Inc., 1932.
(64) Elvey, C.T., Swings, P., and Linke, W., "The Spectrum of the Night Sky," Astrophys.J., Vol.93, p.337, 1941.
(84a) Elvey, C.T., and Farnsworth, A.H., "Spectrophotometric Observations of the Light of the Night Sky," Astrophys. J., Vol.96, p.451, November, 1942.
(64b) Elvey, C.T., "The Light of the Night Sky," Reviews of Modern Physics, Vol. 14, Nos.2-3, p.140, 1942.
(64c) Massey, H.S.W., and Bates, D.R., The Properties of Neutral and Ionized Atomic Oxygen and Their Influence on the Upper Atmosphere, The Physical Society, London, Reports on Progress in Physics, Vol.9, 1942-43.
(65) Hebb, M.J., and Menzel, D.H., "Physical Processes in Gaseous Nebulae X - Collisional Excitation of Nebulium," Astrophys. J., Vol.92, p. 408, 1940.
(65a) Chapman, S., and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: University Press, p.352, 1939.
(65b) Loeb, L.B. , Fundamental Processes of Electrical Discharge in Gases, New York: John Wiley \& Sons, p.652, 1939.
(65c) Taylor, H.S., and Glasstone, S., A Treatise on Physical Chemistry, New York: D. Van Nostrand Company, Inc., Vol.1, p. 380, 1941.
(66) Richtmeyer, F.K., and Kennard, E.H., Introduction to Modern Physics, New York: McGraw-Hill Book Company, Inc., p.248, 1942.
(87) Spitzer, L., Jr., Private Communication, November, 1947.
(68) Bates, D.R., and Massey, H.S.W., "The Basic Reactions in the Upper Atmosphere - I, "Proc. Roy. Soc., London, Vol.187, No.1010, November, 1946; Part II, "The Theory of Recombination in the Ionized Layers," Vol.192, No.1028, December, 1947.
(69) Maris, H.B., "The Upper Atmosphere," Terr. Mag., Vol.33, p. 233, 1928, and Vol.34, No. 1 , p. 45, 1929.
(70) Epstein, P.S., "Über Gasentmischung in der Atmosphäre," Gerlands Beiträge zur Geophysik, Band 35, Heft 1, 1932.
(71) Chapman, S., and Milne, E.A., "The Composition, Ionization and Viscosity of the Atmosphere at Great Heights," Quart, Jour. Roy. Met. Soc., Vol.46, No. 196, 1920.
(72) Heport on Japanese Research on Radio Wave Propagation, General Headquarters, U.S. Army Forces, Pacific, Tokyo, Vol.1, p.18, 1946. See also the Central Radio Propagation Laboratory publications of the National Bureau of Standards.
(73) Bailey, D.K., and Menzel, D.H., The G Layer of the Ionosphere, Project RAND, Douglas Aircraft Company, Inc., Report RA-15057, August, 1947
Also to appear as a paper in the publication of the International Scientific Radio Union Congress - 1947.
(74) Deb, A.C., "Temperature of the Upper Atmosphere," Science and Culture, Calcutta, Vol.6, p. 502, 1941.
(75) Kaplan, J., "Hydrogen in the Upper Atmosphere," Nature, Vol.136, p.549, 1935.

ADDITIONAL REFERENCES OF INTEREST

(76) Woolley, R.v.d.R., "The Mechanism of Ionospheric Ionization," Proc. Roy. Soc, London, Vol.A187, p. 403, December, 1946.
(77) Woolley, R.v.d.R., "Radiative Equilibrium in the Ionosphere," Proc. Roy. Soc., London, Vol.A189, p.218, April, 1947.
(78) Pande, A., "Critical Survey of Recent Theoretical Work on the Ionosphere," Terr. Mag., Vol.52, No.3, September, 1947.
(79) Manning, L.A., A Survey of the Literature of the Ionosphere, Department of Electrical Engineering, Stanford University, Palo Alto, Calif., Meport No.1-Fl, August, 1947. Prepared under Army Air Forces Contract. This contains a very complete bibliography together with brief abstracts.
(80) Whipple, F.L., "Meteors and the Earth's Upper Atmosphere, "Reviews of ModernPhysics, Vol.15, No.1, October, 1943.
(81) Hulburt, E.O., "Terrestrial Magnetic Variations and Aurorae," Reviews of Modern Physics, Vol.9, January, 1937.
(82) George, E.F., "Electronic Collision Frequency in the Upper Atmosphere," Proceedings of the I.R.E., p.249, 1947.
(83) Gosh, S.N., "A Note on 'Effective Recombination Coefficient' in the Ionospheric Regions," Proceedings of the National Institute of Sciences of India, Vol.10, No.3, pp.333-342, 1944.
(84) Appleton, E.V., "On Two Methods of Ionospheric Investigation," Proceedings of the Physical Society, London, Vol.45, p.673; 1933.
(85) Mitra, S.K., The Upper Atmosphere, Calcutta: Royal Asiatic Society of Bengal, January, 1947.

Although this book has not yet been available for examination, the advance notices indicate that it contains a complete account of the present state of knowledge of the upper atmosphere, including the ionosphere, the aurora, the light of the night sky, etc.
(88) Wu, Ta-You, "On the Existence of Atomic Nitrogen in the Upper Atmosphere of the Earth," Physical Review, Vol.66, Nos.3-4, p.65, August, 1944.
(87) Hulburt, E.O., "The Upper Atmosphere of the Earth," Jour. of Optical Soc. of America, Vol.37, No. 6, June, 1947.
(88) Mimno, H.R., "The Physics of the Ionosphere," Reviews of Modern Physics, Vol.9, No.l, January, 1937.
(89) Spitzer, Lyman, Jr., "The Temperature of Interstellar Matter - I," Astrophys. J., Vol. 107, No.l, January 1948.
(90) Hulbert, E.O., "Ionization in the Upper Atmosphere of the Earth," Phys. Rev., Vol.31, No.6, p. 1018, June 1928.
(91) Chapman, S., "The Absorption and Dissociative or Ionizing Effect of Monochromatic Radiation in an Atmosphere on a Rotating Earth, "Proc. Phys. Soc., London, Vol.43, p.26, Part I, January 1931.
(92) Ibid., "Part II, Grazing Incidence," Part 5, p.483, September.
${ }^{(93)}$ Barbier, Daniel, and Chalonge, Daniel, De La Stratosphère A L'Ionosphère, Paris: Presses Universitaires De France, 1942.
(94) Ratner, Benjamin, "Upper Air Values of Temperature, Pressure, and Relative Humidity over the United States and Alaska," Climate and Crop Weather Division, Weather Bureau, U.S. Department of Commerce, May 1945.
(95) Ratner, Benjamin, "Temperature Frequencies in the Upper Air," Climate and Crop Weather Division, Weather Bureau, U.S. Department of Commerce, January 1946.
(96) Petrie, William, "Excitation Conditions in the Upper Atmosphere As Determined From A Study of Atomic Emission Lines in the Auroral Spectrum," Can. J. Research, A, 25, p.293, September 1947.
${ }^{(97)}$ Seaton, S.L., "Temperature and Recombination Coefficient in the Ionosphere," J. Meteorol., Vol.4, No.6, December 1947.
(98) Appleton, E.V., "Temperature Changes in the Higher Atmosphere," Nature, Vol.136, p.52, July 1935.
(99) Gauzit, J., The Composition of the Upper Atmoshpere According to the Dissociation of Oxygen and Nitrogen Molecules," Bulletin American Meteorological Society, Vol. 25 , No.6, p.245, June 1944.
(100) Vegard, L., "Resultats Recents concernant le spectre auroral et l'etat de la Heve Atmosphère," La Météorologie, Nos. 16 and 17, May-June, July-August 1938.
(101) Herzberg, G., and Herzberg, L., "Production of Nitrogen Atoms In The Upper Atmosphere," Nature, Vol.161, p.283, February 21, 1948.
(102) Woodward, R.H., "A Model of The Ionosphere," Terr. Mag. Vol.53, No.1, p.1-25, March 1948.
(103) Bannon, J., and Wood, F.W., "Cause and Effect in Region F_{2} of the Ionosphere," Terr. Mag. Vol.51, No.1, March 1946.
(104) Wulf, O.R., "Light Absorption in The Atmosphere and Its Photochemistry," Jour. of Optical Soc. of America, Vol.25, p.231, August 1935.
(105) Rakshit, H., "Distribution of Molecular and Atomic Oxygen in the Upper Atmosphere," Indian Phys., Vol.21, No.2, pp.57-68, April 1947.
(108) Gowan, E.H., "Ozonosphere Temperatures Under Radiative Equilibrium," Proc. Roy. Soc., London, Vol.190A, No.1021, July 1947.
(107) Ibid., "Night Cooling of the Ozonosphere."
(108) Dobson, G.M.B., Brewer, A.W., and Cutlong, B.M., "Meteorology of the Lower Stratosphere," Proc. Roy. Soc., London, No.1001, Vol.185, February 1946.

[^0]: it is seen that if new values for g' are introduced, the calculated values of pressure and density, etc., remain unchanged if they are interpreted as corresponding to slightly different temperatures ($T_{\text {nor }}$), which are related to the temperatures given in the tables ($T_{\text {old }}$) by the ratio $T_{\text {ner }} / T_{\text {old }}=g_{\text {correct }}^{\prime} / g_{\text {old }}^{\prime}$. The correct values of g^{\prime} at latitude 45° and the ratios which they form with the old values are shown in the tables attached.

[^1]: + Also see Section III-B.
 Also see Chapman, S., and Cowling, T.G., Ref.65a, p.146.

[^2]: [3]
 In view of the great mass of world-wide ionosphere data that has been accumulated during the war years and which is becoming available, this would seem to be a very appropriate time to start a critical survey and study of these data from the meteorological standpoint, since the result of such a study should add greaty to the knowledge of the physical state of the upper atmosphere. Thus the results would give wellestablished mean values for the diurnal, seasonal, and geographical variations ot the height and temperature of the ionized layers. In the published data arailable at the present time, such information is either scarce or lacking entirely. As a result of the emphasis being placed at present on high-altitude, high-speed rocket research, the results described above could be used to great advantage if they were available. Recent world-wide ionosphere data will be found in the CRPL-F series (Central Radio Propagation Laboratory) publications of the National Bureau of Standards.

[^3]: \dagger Cf Poynting, J.H., and Thompson, J.J., A Textbook of Physics - Heat, London: Griffin, Chap.4, 1928.
 $\overline{ \pm}$ Cf Chapman, S., and Cowling, T.G., Ref.65a, p. 37.

[^4]: [3a] Although Vassy and Vassy (80) believe that the evidence indicates the complete dissociation of nitrogen in the F_{2} layer, this view had not been widely accepted as yet and requires further substantiation. It seems more likely that the dissociation of nitrogen

[^5]: + For some concepts, at least, the value of H will also depend upon the vertical distribution of dissociation. See footnote 8, p. 113.

[^6]: \dagger As used in the present connection it would probably be more appropriate to use the term interplanetary gas, since it is the gas in the vicinity of the planet Earth which is being considered.

[^7]: \dagger Also see Jones, J.E., "Free Paths in a Non-Uniform Rarefied Gas With an Application to the Escape of Molecules from Isothermal Atmospheres " Transactions of the Cambridge Philosophical Society, Cambridge University Press, Vol.22, No. 28, pp.535-556, 1923.

[^8]: [3c] In models II and III the dynamical orbit region is considered to be isothermal, since the average time of flight of a particle in this region is negligibly small compared with the time necessary for radiation to affect the particle.

[^9]: [4] This may also be computed from the formula $p=n k T$, where n is the number of particles per unit volume (in this case 2 particles per cm ${ }^{3}$), and $k=$ Boltamann's constant $=1.381 \times 10^{-18} \mathrm{erg} / \mathrm{deg}$.

[^10]: \dagger The writer is indebted to Dr. Lyman Spitzer, Jr., for valuable discussions concerning this region of the atmosphere.

[^11]: [B] See Section III-B, where the collision probability is specified with less ambiguity.

[^12]: [5a] The results presented here for the temperature T_{*} of the exosphere are based on a preliminary analysis which has been revised to some extent in Ref. (61).

[^13]: \dagger Eddington, Sir A.S., The Internal Constitution of the Stars, Cambridge: University Press, pp.376-377, 1926.
 [8] The appropriate equations governing this effect have been given by Spitzer in a paper to appear in the Astrophys. J., Vol. 107.

[^14]: The value $P=1$ used here is considered the correct value to use in order to define the height h. . The value $P=1 / 10$ used in connection with model II is somewhat ambiguous and is unnecessarily small.

[^15]: [8] The simple procedure used here for obtaining N_{*} is valid, since, in model III, all dissociation processes which occur are assumed to have taken place below $h_{\text {f }}$. In particular, all dissociation is assumed to take place below the level of diffusion equilibrium, h_{d} - see Section III-D. If dissociation should be present at levels above h_{*}, it is evident that it would not be possible to replace the atmosphere above h, by an equivalent (same mass) atmosphere of constant composition M_{*} and still obtain the correct value for N_{*}. Since dissociation requires that H change with height, in order to calculate the correct value of $N_{\text {* }}$ in this case it would be necessary to have information concerning the variation of H with height.

[^16]: By combining (14b) and (84b) it is therefore possible to calculate log p / p exactly, for the case with M, T, and g^{\prime} variable. However, these expressions are so involved that it is preferable to use small intervals with the simpler expression (86).

[^17]: \dagger For Figs. 33 through 44 see pages 131 through 142.

