вернёмся в библиотеку?
1.3. ОПТИМИЗАЦИЯ ХАРАКТЕРИСТИК РАКЕТЫ-НОСИТЕЛЯ SATURN V

Детальное исследование динамики полета ракеты-носителя Saturn V, применение системы одновременного опорожнения баков, заправка излишка горючего, выбор формы траектории и программного соотношения изменения компонентов топлива в полете позволяют уменьшить потери, связанные с неполным использованием заправленного топлива, преодолением сил аэродинамического сопротивления и земного тяготения. Оптимизация характеристик ракеты-носителя Saturn V позволила увеличить ее полезную нагрузку на ~2000 кг.

Уменьшение неиспользуемых остатков топлива

В связи со статистической неопределенностью характеристик заправки топлива и летных характеристик ракеты прм выключении двигательной установки в баках остается часть горючего и окислителя. Неиспользуемые остатки топлива увеличивают инертный вес и снижают эффективность ракеты-носителя.

Применение системы одновременного опорожнения баков позволяет повысить эффективность ракеты на жидком топливе, так как такая система, регулируя соотношение компонентов топлива, обеспечивает одновременный расход всего горючего и всего окислителя. Другой метод состоит в заправке определенного излишка горючего и обеспечивает улучшение характеристик двигательных установок без применения сложных систем измерения и регулирования. Заправляемый в баки ступени излишек горючего определяется исходя из условия равенства предельно допустимых остатков окислителя и горючего при одинаковых вероятностях их появления. Заправка некоторого излишка горючего позволяет уменьшить средний вес неиспользуемых остатков топлива.

Заправка излишка горючего с целью максимизации полезной нагрузки

Заправка излишка горючего с целью минимизации неиспользуемых остатков топлива, очевидно, позволяет увеличить полезную нагрузку ракеты-носителя, однако она не обеспечивает получения максимально возможной полезной нагрузки. В некотором диапазоне уменьшение излишка заправленного горючего приводит к увеличению веса. Определение излишка заправляемого горючего представляет собой нелинейную вероятностную задачу.

Система опорожнения баков

Заправка излишка горючего дает значительный эффект, однако неиспользуемые остатки топлива могут быть дополнительно уменьшены с помощью системы одновременного опорожнения баков. Эта система измеряет уровень горючего и окислителя в полете и регулирует расходы так, чтобы оба компонента топлива были израсходованы одновременно. Система состоит из датчиков для измерения текущих уровней топлива в каждом баке, счетно-решающего устройства для определения условий одновременного опорожнения баков и дросселя, установленного на расходной магистрали и регулирующего соотношение компонентов.

Сравнение сигналов датчиков от двух баков в счетно-решающем устройстве позволяет автоматически управлять дросселем. Регулирование осуществляется путем перепуска части расхода окислителя из запорной магистрали на вход в насос. Такое регулирование в замкнутом контуре обеспечивает близкое к одновременному израсходование компонентов топлива и позволяет увеличить полезную нагрузку, выводимую на траекторию полета к Луне по сравнению с номинальной на 200 кг.

На первый взгляд может показаться, что для ракет, оборудованных системой одновременного опорожнения баков, заправка избытка горючего для уменьшения неиспользуемых остатков топлива не нужна. Однако, в связи со случайными разбросами характеристик работы системы опорожнения, остаются небольшие неиспользуемые остатки и необходимость заправки избытка горючего сохраняется. Но заправка избытка горючего в случае ступени с системой одновременного опорожнения баков приводит к дополнительным осложнениям, поскольку система будет стремиться израсходовать в первые секунды работы избыточный запас горючего, сводя к нулю эффект такой коррекции при заправке. Чтобы этого не произошло, в счетно-решающее устройство системы опорожнения баков вводится корректировка, соответствующая избытку заправленного горючего.

Уменьшение потерь скорости

При движении ракеты вдоль активного участка траектории полета часть энергии топлива расходуется на бесполезную работу по преодолению силы тяжести и силы аэродинамического сопротивления. Эти потери могут быть уменьшены путем сокращения продолжительности активного участка или путем тщательного выбора траектории полета, однако часть этих потерь является неизбежной.

Полное исключение гравитационных потерь позволило бы увеличить выводимую к Луне полезную нагрузку ракеты-носителя Saturn V на 22 700 кг. Полное устранение потерь на управление и преодоление силы аэродинамического сопротивления дало бы дополнительный выигрыш в 4540 кг.

С целью уменьшения потерь скорости можно применить регулирование в полете соотношения компонентов топлива, которое приводит к значительному выигрышу в весе полезной нагрузки.

Вычисление потерь

Приращение скорости, обеспечиваемое ракетной ступенью, может быть определено путем вычитания из характеристической скорости гравитационных, аэродинамических потерь и потерь на управление


* Иногда в это уравнение включаются потери, связанные с кориолисовым ускорением, нерасчетным истечением газа из сопла ЖРД и гарантийным запасом топлива.

В табл. 1 представлены типичные значения потерь для ракеты-носителя Saturn V применительно к траектории полета на Луну.

Таблица 1

Ступень Характеристическая скорость, м/сек Гравитационные потери, м/сек Аэродинамические потери, м/сек Потери на управление, м/сек
Первая
Вторая
Третья
3660
4725
4120
1220
335
122
46
0
0
0
183
4,5

Несовпадение вектора тяга двигательной установки с вектором скорости полета ракеты приводит к потерям на управление. Эти потери уменьшают скорость полета ракеты-носителя Saturn V на 187,5 м/сек. Однако, если бы траектория была направлена против вектора гравитации, гравитационные потери были бы значительно больше 187,5 м/сек.

Программное изменение соотношения компонентов топлива

Во время активного участка полета второй ступени ракеты-носителя Saturn V производится 20%-ное ступенчатое изменение соотношения компонентов топлива, вызывающее соответственно уменьшение тяги и увеличение удельного импульса.

При одинаковых заправках топлива характеристическая скорость ступени одинакова для полетов с постоянным соотношением компонентов топлива и программным изменением этого соотношения. Таким образом, улучшение характеристик при программном изменении соотношения компонентов достигается путем уменьшения потерь скорости, а не вследствие увеличения характеристической скорости. В основном, программное изменение соотношения компонентов уменьшает потери благодаря тому, что при этом топливо более быстро расходуется на начальном участке траектории и затраты энергии на подъем топлива в поле тяготения уменьшаются.

Угол наклона траектории полета ракеты-носителя Saturn V на активном участке имеет вид экспоненциальной кривой (рис. 13.1).

Эффект ступенчатого изменения соотношения компонентов топлива при полете по такой траектории не поддается простому наглядному объяснению, однако можно сказать, что большая тяга желательна, когда движение ракеты близко к вертикальному, а большой удельный импульс желателен при движении ракеты, близком к горизонтальному. Рассмотрим пример, позволяющий показать, почему оптимальное значение удельного импульса сильно зависит от угла наклона траектории полета.


Рис. 13.1.Программа изменения угла наклона
траектории полета ракеты-носителя Saturn V

Полет с постоянным углом наклона траектории

Рассматривая движение ракеты по траектории с постоянным углом наклона в постоянном гравитационном поле, предположим, что тяга, расход топлива и удельный импульс являются линейными ограниченными функциями соотношения компонентов топлива, причем тяга и расход топлива—возрастающие функции, а удельный импульс — убывающая функция.

Задача сводится к выбору такого соотношения компонентов топлива, при котором ракета в конце активного участка будет иметь максимальную скорость.

Если предположить, что потери на управление и преодоление силы аэродинамического сопротивления пренебрежимо малы, а удельный импульс постоянен, то скорость в конце активного участка полета ракеты может быть определена по формуле

Поскольку g0 и γ постоянные величины, уравнение можно проинтегрировать

Для второй ступени ракеты-носителя Saturn V можно установить, что меньший удельный импульс обеспечивает максимум конечной скорости в случае вертикального полета, так как большая тяга и меньшая продолжительность активного участка позволяют уменьшить гравитационные потери, но при горизонтальном полете член, характеризующий гравитационные потери, равен нулю, независимо от времени работы двигателей, и в этом случае желателен более высокий удельный импульс. Таким образом для какого-то промежуточного значения угла γ между 0 и 90° скорость в конце активного участка не зависит от величины удельного имлульса. Это значение можно определить по формуле

граничные значения линейных функций удельного импульса и секундного расхода.

Для второй ступени ракеты-носителя Saturn V по уравнению (13;5) получим γ=3; таким образом, если угол наклона траектории меньше 3°, то желательно иметь большой удельный импульс при меньшей тяге, а если γ>3° снижение удельного импульса при увеличении тяги позволяет увеличить полезную нагрузку.

Связи между приращениями скорости и полезной нагрузки

В конечном итоге необходимо обеспечить максимум веса полезной нагрузки, а не скорости в конце активного участка траектории полета.

Для последней ступени ракеты в момент выключения двигательной установки имеем

Подставляя m1= m2+δm1, разлагая полученное выражение в ряд Тейлора и решая относительно δm1получим

Для ракеты-носителя Saturn V приращение характеристической скорости на 1 м/сек экивалентно увеличению веса полезной нагрузки, выводимой на траекторию полета к Луне, на 15 кг.

Полет с переменным углом наклона траектории

В практических случаях угол наклона траектории полета ракеты меняется со временем, и оптимальная величина удельного импульса не является постоянной для всего полета. Меньший удельный импульс при большей тяге выгоден на участке траектории, близком к вертикальному, затем при переходе к более пологому участку траектории целесообразно изменить соотношение компонентов топлива таким образом, чтобы обеспечить высокий удельный импульс. Однако требование достижения определенной высоты в конце активного участка усложняет анализ реального полета.

В реальном полете управление ракетой, близкое к оптимальному, обеспечивает достижение заданной высоты в конце активного участка.

Изменение расхода топлива в процессе полета в предположении постоянства удельного импульса и фиксированного времени работы двигательной установки не приводит к изменению характеристической скорости. Однако, если энерговооруженность выше и расход топлива больше на начальном этапе полета, то ракета будет двигаться с большим ускорением и, следовательно, высота полета в конце активного участка будет больше.

Таким образом, если топливо выгорает быстрее при большей тяге на начальном этапе полета, то это приводит к увеличению высоты в конце активного участка. Но высота, большая по сравнению с расчетной, нежелательна, поэтому вектор скорости будет раньше приведен в горизонтальное положение. В результате соответственно снижаются потери на преодоление гравитационных сил и на управление.

Уменьшение потерь во время полета первой ступени

Расчет на вычислительной машине показывает, что применение программного изменения соотношения компонентов топлива на активном участке полета второй ступени приводит к значительному уменьшению гравитационных потерь на активном участке полета первой ступени. На первый взгляд это кажется парадоксальным. Но этот эффект объясняется особенностями применяемой на ракете-носителе Saturn V системы управления траекторией полета.

Принцип итерационного управления реализован лишь на верхних ступенях ракеты. На активном участке первой ступени ракета-носитель Saturn V летит по жестко заданной траектории, обеспечивающей минимальные аэродинамические нагрузки. Однако, оптимальность параметров жестко заданной траектории активного участка первой ступени связана с программой работы двигательной установки второй ступени. Высокая тяга на начальном этапе работы второй ступени позволяет выбрать более пологую траекторию на активном участке первой ступени, что приводит к значительному уменьшению гравитационных потерь во время полета ракеты с работающей первой ступенью.

Уточнение статистических оценок характеристик ракеты

Статистическая неопределенность характеристик ракеты-носителя приводит к уменьшению ее полезной нагрузки. Это объясняется тем, что последняя ступень ракеты-носителя должна иметь гарантированный запас топлива, достаточный для компенсации разброса характеристик всех ступеней ракеты-носителя. Гарантийный запас топлива на третьей ступени ракеты-носителя Saturn V в 1969 г. был принят равным 1 т. Наиболее значительные потери связаны с неопределенностью тяги и удельного импульса. В табл. 2 приводятся значения частных производных веса полезной нагрузки по тяге и удельному импульсу для всех трех ступеней ракеты-носителя Saturn V. Анализ летных испытаний позволил улучшить статистические оценки характеристик двигательных установок и уменьшить гарантийный запас. Уменьшение гарантийного запаса топлива на последней ступени на 1 кг примерно равноценно соответствующему увеличению веса полезной нагрузки. [17]

Таблица 2

Ступени Производная веса
полезной нагрузки
по тяге дGп.н/дF, кг/%
Производная веса полезной
нагрузки по удельному импульсу
дGп.н/дJуд, кг/%
Первая
Вторая
Третья
227
113,5
1,36
636
680
636

Таблица 3

Мероприятие
Выигрыши в весе полезной нагрузки, кг
Примечания
Заправка излишка горючего для минимализации неиспользуемых остатков топлива 545 При отсутствии системы опорожнения баков
Установка системы опорожнения баков 180 При заправке излишка горючего минимизирующего неиспользуемые остатки
Программное изменение в полете соотношения компонентов топлива 1 225 Высокие соотношения компонентов и тяги на протяжении 65—75% времени полета второй ступени, далее низкое соотношение компонентов и высокий удельный импульс
Увеличение веса заправляемого топлива 180 Изменение состава смеси в полете приводит к увеличению веса заправляемого топлива на 18,15 т
Уменьшение статистической неопределенности характеристик 365 Для всех трех ступеней
Вес полезной нагрузки, выводимой на траекторию полета к Луне 45 360 Включая все перечисленные выигрыши
назад
к началу
далее