OS wacycémbentrou I* cӣуniturce Sesıu.

$$
\frac{\text { Whb. } H_{2}^{2} n_{1}}{\text { Oule }-1962 ?}
$$

$\frac{\text { Unhand }}{\text { oxull-1q82sos }}$

ZORTATHAЯ ЗAIIMCRA

В настоядее время имешоя реальнне технические возиомности достидения с помощь пзделмй P скорости, достаточной для создания пскусственного спутника Земли, Наибодее реальним й осуществиим в кратчайший срок является создание искусственого спутника Земли в виде автоматического прибора, поторый был бн снабжен научной аппаратурой, имел бн радиосвязь с Землей и обращалоя вокруг Земли на расстоянии порядка I70-II00 m от ел поверхности. Такой прибор будем называтъ простейшим опутником,

Простейпий спұтник мнслитоя жак апарат без лодей, движуцийся по эллиптической орбите й предназначенннй для научннх целей. Вес такого спутника мог бн бнть порядка 2000 3000 kr , считая и научнуш аппаратуру. Как будет видно из дальнейпето, пути реализации простейшего опутника в настоящее время принцид́пиально яснн. Без сомнения, невоторые вопросн потребушт дальнейших псследовании, но, во всяком случае,можно товорить о создании технического проекта простейшего спутника. Срок осуцествления его зависит пскличительно от сроков осуцест вления изделия P, с помощъі которого возможно получение нужно скорости. Проектирование спутника может идти параллельно с созданием такого изделия Р. В случае, если в этои направлении работа будет начата немедленно, создание простейшето спутника модет быть осуцествлено в ближайиее время.

0днако на базе тех же изделиий P возможно, как показали расчеты, осуцествление целой программи работ, постепенно

приблипариих нас к созданию искусственното опутника Земли, значительно более совершенного, чем простейший спутник,такого, на котором иотли бн суцествовать лтдди.

Кратко эта программа работ матла бн закличатьея в следупмем.

Начальнвм этапои работ долиен бнть указанннй више простейший спутник. Наряду с простейшим спутником, в этот же этап работ долини бнть вклочени освоение человекои техники полета на изделилх P и разрабогка методов безопасното опуска со опучиика на Земло. Заметим, что практическая разработка этих иетодов возможна, вак будет видно из дальнейшего, и до осуцествления спутников с лодыии.

Таким образом, нклочением в начальнй этап работ полетов человека на изделиях P, а также изучения и разработки методов безопасного спуска, достигаетоя естественний переход от проотейшего опутника г неболышому эксперинентальнову спутнику с лодыыи, рассчитанноиу на длительное пребывание I-2 человек на круговой орбите.

Наряду с научныии задачами, на этом спутнике долзни бнть пзучены уоловия длителнного существования лодей в уеловиях невесомосли й экспериментално решен вопрос о создании опутника - отанции, являрцетося дальнейшим этапом работ в этои направлении.
Спутник-станция долвен бвть достаточно больших размеров, иметь собственние энергетические установки й различное оборудование, и в нем должнн бнть создани условия, необходимне для суцествования лодей, т.е. решени вопросн воздухоснабжения, пищеного режима и т.Д., и, возмодно, созданя необходимая минимальная опла тязести. Тако青 опутник доляен иметь более или менее ренулярное сообщение с земной поверхностыы.

Значение такото спутника трудно переоденить．он может бнть лабораторией для целого ряда научннх исследований，он может иметь огромное народно－хозяйственное значение，т．к．． напринер，позволит длительное время наблодать процессн，проио－ ходящие на Земле и т．д．Наконец，он может бнть отправной стан－ циее⿱⿱卄一八殳林дл псследования，например，Луни и друмих планет．

Далее изложеннне више этапи рабог расоматривартоя более подробно，причем，основное внимаиие уделяетоя бливайшему этапу работ－простейшепу спутиику и полетаи человека на изде－ лииях P．

आPOCTE＂Whal civthin

Простейпий автоматический спутник мозет рассматриватьея как гервий этаи создания более совершенннх и оложннх опучников． Действительно，проетейший спутник ммслитея вак аппарат без лодей，в связи с чем отпадает ряд проблем，связанннх с необхо－ димостьр подғема человежа на орбиту．Кроме того простейший спут ник может двитатьея по эллиптической орбите，получение которой проще，чем круговой，наиболее целесообразной для опутника－стан－ ции．Можно пожазать，что для получения движения по круговым орбитам целесообразно разделить активннй участок полета на две части；при этом наиболее экономним в смноле затрат энергии являетоя следуюмий путь．Активний участок выбираетоя так，чтобн вектор скорости изделия P относительно дентра Земли в конце первой части активного участка бнл перпендикулярен радиусу Земли．Величина скорости，после окончания работн двигателл， должна ๙беспечивать движение опутнива по эллипсу с апогеем， вноота которого равна висоте круговой орбитв．Перигей этого

эллипса будет совадать с точко量，в которо员 оканчивается работа двигателя．

В апогее этого эллиса производитоя добавочное домигание топ－ лива，носле чего спутник выходнт на круговур орбиту или на орбиту，близкуі K ней．

Если длл простейшего спутника мы откажемея от дожита－ ния топлива в апогее эллннса，поторое сопряжено с необходи－ ностью достаточно точно определять точку апогея и ориентиро－ вать в этой точке спутник，то получмм двиаение по эллису， который для спутника с крутово员 орбито⿱⿱𫝀口㐄 являлся он переходным．

Произведеннне расчетн дашт следушпие характеристики орбиты такого опутника／рис．I／．Эти характеристкки поллченн при весе спутника в 3000 Kr ，не считая веса конечной отупени изделия P ，которая может отделятъся от сгутника，но может п пе отделяться

Внсоте перигея над поверхносты Земли I70 km．Внсота аполея соответотвено $\operatorname{IIO} \mathrm{km}$ ．Вследотвие доволно низко券 внсоты перитея，тде，хотя й незначително，существует сопро－ тивление атмосферн，спутник в конце концов упадет на Земло， но до этоло．он совершт более 300 оборотов，т．е．будет обра－ щаться вокруг Земли в течение более чем 20 суток．

Период обращения вокруг Землм Ічас．З7мин．．За 24 часа спутник делает I5 оборотов，кажднй раз омещаясь по долготе на $24_{0}^{0} 4 \mathrm{k}$ западу．Іутем уменвпения веса спутнита можно уве－ личить высоту перитея пи тем салим увеличить продолиительость времени обращения спутника вокруг Земли．На этом вопросе ми остановпися когда будем товорить о весе спутниаа．

Puc.1. Onduma nоocineímero спиmника.

Место старта и направление пуока пзделия P /азииут/ внбранн такии образом, чтобн п окорости изделия P добавилась возможно больмая составляюцая окружной скорости Земли / ~ $200 \mathrm{~m} / \mathrm{cez} /$ пи в то же врени, чтобн подет спутника возможно большее вреия проходил над нашей территорией. Последнее являетея главныи. За каждне сутки спутния в течение 16 ч. дееять раз проходит над нашей территорией. В это время осуществляетоя радиопрнем различних данннх ∞ спутника. в момент вихода на орбиту широта перитея $\sim 50^{\circ}$, долтота $\sim 45^{\circ}$, азимут орбитн в перигее 35°, При этом наклонение орбитн 68°. Iри этих уоловиях пусжа спутник будет подниматьоя приблизительно до полярного круга й будет непреривно находитьея над нашей территорией магсимли в течение I5 минут за время одного оборота

Іри надлежамем выборе момента времени пуска, орбита молет бить осуществлена так, ччобн ее плоскость бнла перпендикулярной к направленир на Солнце. В этом случае первые восемь суток обращения Солнще будет непрернвно освещать спутник т.е, последний будет обращатьея, не догружаяоь в земную тень.

Скоросгь отнооптөльно центра Зенли в перитее
$V_{0}=8,07 \mathrm{~km} /$ cer. Скорость в апогее $7,050 \mathrm{~km} / \mathrm{ces}$.
Эксцентриситет орбиты 0,067 .
Смеңение перигея за один оборот веледствие эллиптичности Эемли 4, $^{\prime} 35$ /на рго-запад/, т.е.примерно за сутки -- $I^{0} 0$, لаксимальное изменение наклонения орбитн от начальното значения меньше $\pm \stackrel{2^{\prime}, 55}{=}$

Ночвю спутник будет виден, если он находитея в лучах Солнца, как звезда от - I. 75 до 9 величинн в зависииости от зенитного расстояния, места наблодения и положения ето /альбедо 0,6-0,2/.

Максимальная перегрузка на активном участке около II.
Простейший спутник предназначается для получения систематнческих научннх данннх, для пзучения условий радиосвязи, для изучения поведения вивотних в услозиях ето полета и для получения ряда данних, необходинх для последу曰цето проектирования спутника с лодымй.

Спуст простейшего спутника на Земдр вряд ли может бнть осуцествлен без разрушения его материальной части. Поэтому считалось, что он на Землा не спускается и ликвидируется в нужний момент времени.

Однако, для сохранения ряда полученннх научннх дан нх, которне невозможно передать по радио на Землы, необходимо в конструкции спутника преду смотреть спещиаль вур кассету, которая могла бн бнгь спасена, и в которой сохранилась бн первичная научная документатия. Могуг бнть ориенгировочно указаны следурпие возможнне способн внброса и последупцего обнаружения такой кассетн:

I/ B сличае, если спутник ориентирован относительно Земли такии образои, чго ето осб совпадает с касательной к орбпте,кассета пожет бшгь доставлена на Земло по принципу бомбометания со спутника в определеннур точку, причеи кассета тормозится с помощьр реактивной сллн. В случае ориентации спутника относительно звезд, момент времени, в которнй промзводитоя виброс, должен бнть предварительно равочптан.

2/ Внброс нассетн на одном из последних его оборотов перед падением на Земли. Предварителнно необходимо отделить кассету ог спутника й стабилизировать ее за счет аэродинамическиз оил. Затем при помопи реактивного импульеа, даваеного в нужнй момент с цель спуска в удобном месте, кассета долмна бнть переведена на более крутур траекторию и долмна упасть на Землдо.

Обнаружение кассетн может бычь виолнено различниии способаии. Например, пучеп приема сигналов от радиопередатчика, вибраснваемого мместо с кассетой или, возмозно, путем исполь зования для обнарумения кассетн радиоактивного вещества, применяя специальные индикаторы. Место падения можно будет засечъ, ориентируясь по интенсивности радноизлучения от кассетн.

На опутните возможно поместить телевизионнуо установку длл дередачи пожазаний приборов пп других изображений на Землы. Вес такой уотановки мог бн бить порядна 300 kr .

Простейшй спутник, если не будет принтто викаких мер. будет телом неориентированним в пространетве. Такой неориентированный спутник дает возможность осуществить радиосвязь с Земдей й дередачу ряда научних даннвх. длл решения, однако, некоторнх научннх проблем желателнн определенная ориентация спутника. Эта задача достаточно сложна и, в случае невозмодности бнстрого ее решения, первнй спутник должен бнть сделан неориентированни, тем более, что помио научного пуск первото спутника в нашей стране будет иметь также огромное политическое значение.

Пз ряда возмозннх решений вопроса ориентации могут быть щказаны следуюцие:

I. B сллчае ориентатии относлтелно неподвижних 3 зезд

 на спутнике нсобходимо пнеть труон, в поле зрения которых находились бн заранее выбранине звездн, Количество труб долдни бить 4-6. पисло 6 соответствует самому невылодному случа. При удачном внборе звезд, например, две звезды Ј торизонта आередй спутника на угловом расстоянии $60-\mathrm{I} 20^{\circ} \mathrm{Z}$, соответственно, две звездн сзади нето, возмоzно, удастсл обойтдсь четнрым трубами. Необходио, чтобн, незадоло до отделения спутнита от дзделия P, звезды уже находилиеь в поде зрения труб. Это может быгs достигнуто заранее расочитанной Јетановкой труб. При этом важно, ччобн спутник бнл выдущен в определенний момент времени с точнооть: хотя бн до I-2 минут, т.к. за это время небеснииी свод новернется всето на 15^{\prime} 重 30 '. Поле зрения точно ярх政 зноранних звездах, обеслечивает попадание их в поде зрения ии искличает возиолносты попалания других яржих
 ременних пзделий P на активном участке, с чочки зрения улловик отклонеши!, позволяет осуществит такуо систему.
 давпея на управляошие органн, которили погут бетз или парогазовая систеиа сопел в трех плоскосля, пли система маховиков /рис.2/. Последняя сиетена пожличаем расход парогаза, кроме, возможно, начального участка орбитн, где возмучения напоольмие. На этом участте, по всей вероятности, необходимо будет приенение парогазовоп слстели.

стамор эпектрроgfuramenя
pomop эnekmpogburamenя

4Л7-ycunumenь-преогразованепь
扫 - репеи́йое yстроі́cтво
Pис. 2. Cxema стабитизации заданного направления ири помощи маховика

Приншип действя сиетем с маховиком закличается в следуюпем. Прі воздействи внешнего возмущаюпето момента на корпус опутнике настройка на звезду трубн, жестко связанной с корпусом, нарушаетоя. В обмотке ротора электромотора, вестго связанного с маховпком, возникает тог ,пропорциональннй углу отклонения корпуса п его производннм по времени. Так как ротор находитоя в матнитнои поле статора, установленного неподвижно на корпусе спутника, то врапение ротора вызнвает обратное вгаще ниекорпуса спутника, которое компенспрует возмуцарщее действие внепнего момента. Расчеты показнварт, что при средней угловой скорости, не превмпарщей о,дного оборота в минуту, практическое создание такой спетеин возможно, т.е. возможно догасить действие возмуцений раньше, чеи звезда внйдет из поля зрения труфн. Заметим, что при движении спутника по орбите нет основания ожидать появления возмущений даже указанного порядка I/.
2. В случге ориентапии относптельно солнпа труба, жестко связанная со слутником, направляется на Солнце. При попадану и спутника в тень Зеили ориентация нарушается. Поэтому на спутнике необуодима установка специальноll аппаратурн, спова наводящей труоу на Солнце, после того как он внйдет из тени Земли. Эта апшаратура может бнть разработана на принцине пппользования гироскопов, которые стабилизировали бы спутник во время проходдения тени Земли или использования тока от термоэлементов. В последнеи случае максимум тока совпадает с направлениеи на Солнце. Јправлярцие органн могут бнть устроенн так ze, как в предндудем элучае. Заметим, что при такой ориентации не уотраняетоя вращение относительно оси, направленной на Солнцце.

3. B сллчае ориенташии относителыно Земли

может бнгь предлоден метод, основаннии на попользовани
 создана
a/ при помопи фотоэлеменчов, напрамленннх на линир торизонта. Фотоэлементн долини бнть направленн под определеннии утлами и настроени на горизонт до отделения

 иеддл освд опутника, направленно: по вертикали, по оол-
 того, чгобн линия торнзонга не уходила пз полл зрения послодних, Пзменение углов модет производить оя по омгна лаін от canmx ©отоэдеменгов.

б/ Iри понопи радиоволн /радновермикаль/. Радиовертикать, в влду болього удаленил спзтника от Земли п, следодателно, шалого влилил неровностой рельеф̆а, будет достаточно точна С. Создание радиовергикали возможно
 мопностн электроэнергии. Јправляпмие органн могуг бнгь

घ/ Прд помощн специальних приопособлений пепользуп-
 валсв подробно на этои случае, укажем лищъ, что, жак пожазнвалт тредварительще исслюдования, при достаточно шалих возиуцених в конце активного участка пзделия, возможно достаточно просто ориентиродать спутник относи гельно Земли, пспользуя неоднородность поля земного тяготения.

सроме пзлоzенинх способовориентации возмознн другие более соверпенние, но пн более сложнне, например,астронавиация. Но для решения ряда научннх задач перечполенни способн,повидпому, будут достаточниин.

Наконед, необходимо остановиться на вопросе радиосвяяи со спутнитом. Так так непосредственная связь будет возможна толико в пределах пряиоी видмоэти, то, при условии расположения принмармих радлостаниий на нашеі территорин в числе 3-4 стапции, в сосгав радиоаппаратуры спутника долио входить
 будег находиться под торизонтои. Тогда полученние данние могли бы бнть передани во времи проходдения спутника над наше"̆ территорией.

पто касаетея источников питания для радпостандии на спутнике, то в случае, если пй являргоя аккулулятори, 取 вес ножет быть оценен в 260 KI на 6 часов непрернвной работн. Если удастоя решть вопрос о создании спедиального поточника электроэнердии на самои опутнике, хотя бн за счет иополизования энорции Солнца, ноzно будет гозоригь о кругдосуточной рабоге радиоотанции спутника.

На основаиии всего еказанного водио составить следурцур ориентировочнур весовур сводку_дли простейшего спутника Becom 3000 kr .
I. Конотрукдия с уетроі ствами для ориентадии ciry тиикка 1300 mr
2. Петочники питания:

в случае приненения аккуилляоров на
6ч. непрернвной рао́оты 280 kr
в случае попользования энергй Солйа
/наир. термоглементы/ I00 кг
3. Средства сдязи с Земдей:

радиостанция с запомнавии уотройствон I70 Kг
телеуотановка
300 kr
кассета с јетройствами длл ее спуска на
4. Научно-исследовательская аппаратура: научная аппаратура
киноаппарат, пленва, животнне

5IO-I250 Kr
160 Kr

Эти грузн не все сразу долинн помещаться на спутнике. Например, батарея аккупллторов может бнть заменена термоәлектрической установко员 и т.д.; киноаппарат и животнне могут браться не в кажднй полет. Для научной аппаратуры поэтому может бнть использован различннй вес. Еели радиостаниии мин берен в кажднй полет, то научная аппаратура может весить $510 \mp$ † 1070 kr при условии, что иеточником питания являросяя аккупуляторы и 870-1250 при условии, что будет создан псточник щитания ё использованием энергии Солнца.

В случае, если будет желательно увеличить висоту перитея, то это, как уже указщвалось, возможно, но за счет уменьшения веса спутника. Так, при весе спутника в 2000 kr по расчету получается макспиально возможная, при принятом пзделии P, высота перигея 370 KM й высота апогея $700 \mathrm{kM} / V_{0}=7,78 \mathrm{~km} / \mathrm{cez} /$ при условии эквмвалентной заменн снятого полезного труза топливом, т.е. при увеличении баков последней ступени пзделил Р. Путем только уменьшения веса спутника без переделки баков высота перигея может бить повышена только до $3 І 0 \mathrm{kм}$; при этом внсота аногея будет $\sim 400 \mathrm{~km}$.

При весе спутника в 2000 Kr , с учетои того, что спловал конотрукция может бнть сделана легче, вес научной аштаратурн будет $\sim 320 \mathrm{kr}$ при условии, что истояником питания будут акку мултори и $\sim 500 \mathrm{kr}$ при иоточнике питания, пспользувцем энергир Солнца.

－I3－

Спутники с такиии ороитами будут обращатьея вокрут Земли не менее ІО лет，посло чето они все зе упадут на Земли， так вак сопротивление атиосһ̆ери на высоте 300 km ，хотя й нич тожное，но суцествует．

Работы по освоенир человеном полета на пзделия P иогут щтчи параллелнно с работами по подготовке пуєка простейшего спутника．Целы ээпх работ являетоя ознакоиление человена с уеловинии полета на изделиях Р в верхних слоях атмосфеери и вне амиосерери，особенно в условиях невесомости．

Эти работн доленн проводитьоя по опециальной програмле с постепеннии усложнениеп задач каждого полета．

Ірограмна всех этих опнтов должна，по нашему иненир，зоїти составно⿱口⿻口一 частьы в програмпу работ Акадеии Наук СССР по пуску пзделй Р．Сначала，возмозно，долкнн следовать вер－ тикальние подэеми человека с цель предварительного знакомет－ ва с условіии полета на изделиях P ，потом полетн с виводом изделия на горизонтальннй участох с последуопим наклонным движением к поверхности Зеили п планированием．В этих послед－ них полетах величина скорости на торизонтальнои участке долина поотепенно повишагься．

При подғеме человека на изделиях P наиболее суцественнии является снижение перегрузок до допустииой величини． Это может бнть достигнуто путеи соответствурмего дроссели－ рования двигателя．

При проектировании кабинн для человека долиан бнть ис－ полвзован богатнй ощнт авиапии．

HЗУपEHIIE IETOZOB CIVCSA IPII CKOPOCTII BXOZA B ATHOOESPY

IIOPADTRA $8000 \mathrm{~m} / \mathrm{ce} \mathrm{\pi}$.

Эти работн такме могут идти параллелно с созданием простейшето епутника. Целыр этих рабог является разработка необходмиих средетв спуска на Земло при скорости входа в атиосю̆еру до $8000 \mathrm{M} /$ сет. Вез сомнения, разработка этих оредетв может бнтв начата с пзучения спуска прп меньших сооростях, с последурпии постепенни повымииен mx .

Проблема спуска при скоровпи входа в атиосф̆еру поряднка $8000 \mathrm{~m} /$ сет, собственно товоря, явлнетол пробдемо员 плл спуста со спутника плти спуска сапого ппутника на Землю.

Заметим, что проблена такого спуска ножет бнть решена, опе до того, как будет создан спутнит, коль скоро вознодно получнтв пздел ни P со скоростьр порядка $7 \mathrm{~mm} /$ ceк. В эrом случае програмла ажтнвого участка долана бнть енорана такпи образом, чтобн посло огончания работн двитателя внсота II угол наклона траекторми давали возшожноств начать сразу спуск, не виходя на аллптическуп оро́иту. Іри спуске на Земдо рационально псползовать тормодение в атмосфере для того, чтобн подойтн т Земле с безопасно малой скоростьы.

Угол входа в агносф̆еру, нз условнll безопасного спуска, считая внсоту 80 KM практической границеіи атмосю̆ерн, желательно миеть в пределах от 0^{0} до 4^{0}, что, как пожазивапт расчетн, волне осудествмо.

для спуска с йсползованием ториожения в атосфеере можно наметитв два способа:
a/баллитџчесиी опуок, т.е. спуск без участия подइемних аэродинамических сил.

Ірн баллистческом спуске аппарат пелесообразно виполиять в виде тонуса с углои раствора ~ () ${ }^{0}$, статиффически устойчиволо, Такой конус, при наличии дополнительннх тор мозннх устройств, будет значительно тормозитьол в верхних слоях атносерер. Как пожазиваит ориентировочнне расчети, равновесная температура поверхности понуса нодет мметв порядок $1000-2000^{\circ} \mathrm{C}$. Такая темиература делает возмоднии приненение запитиих тугоплавних пожрнтй , Такве возиозно прменение нарудного охлаждения путен вспрнска дпдкого охладителя через порн в материале.

После того, кат скоростъ дзинения оганег дозвуковой, спуск
 значительно月 степени упрощается управление полетом, ччо являетоя премиуществои этоло мегода по сравненир со спуском на крнл gх. Однако дрн балднопчесои спуске трддно обеспечить достаточ. но шалне, допустныне для человеческого организма, перегрузки. Приблиенине расчеты пожазнваря, что в течение одной имнуты на пилота ногуг действовагь перегруяли свыше 5. Макспиальние перегрузки могут доходить до 8-IО. Пугэм дрименения регулируе-
 мальнне перетрузки до 5-6.

Хсследованщт второго способа, т.ө. спусва на крнльях, пожа.
 цнанге подэемной спли $\quad C_{y}=0,05-0,07 \pi$, при полном лобовом сопрогивлении аппарага прмиерно в 5 раз больпе, чен сопротивление самолета-пстребпеля, нолно путен делесообразного вибора релина спуска /по $C_{y} /$,обеспечигь осевне перетрузки мень
 нагрева, прд двмжении о болышии скоростяи в аммосоаере, придется прмненять специалыне мерн защмти, хотя, как показнвапт расчетн, температура поверхности опуокамщего оя аппарата, получаercr

ниже $/ 800^{\circ}-\mathrm{I} 500^{\circ} \mathrm{C} /$, чем при апуеке без крилев, т.к. полет соверпаетея по бодее полотой привой, Здесь погут бкть намечени те ще, что п ддл баллистического спуска, методы запитн, т.е. или применение тугоптавких матерлалов или наружного охламдения путем вепрнска охладителя через пори в материале и пепарения ето на поверхности аппарата.Расчети, проведеннме по опедиально разработанному методу, пожазали, что необходимме за-
 I минуту полега. Іо растету продолителность дейотвия высоких твмператур да аппарат порядка $8 \mathrm{~m} \boldsymbol{\mathrm { m }}$.

Тажие сравнительнне денкие условия спуска подучились благодарл малмм углам входа в атиосю̌еру и, следовательно про-
 угол входа составлял, например, 20°, темпоратури поверхно оти аппарата полушллись бн значительно больше.

Више бидо отмечено, что разработка методов спуска может бнтъ начата уже при иепользования аппаратов, имешпих скорости значительно менъше $8000 \mathrm{~m} / \mathrm{cek}$. На начальном этапе работ могут
 $3000-3500 \mathrm{~m} / \mathrm{cer}$.

Таким образом, без сомнения, имер̆тея техяические возмодности для устешното решения одной из самих трудних проблем созданля спутника, т.е. проблемм спуска человека с орбитн на Землдo.

BовMOM

I. כқопериментальнй спутник с лодыми. В результате внполнения первого этана, о котором ми товорили выше, станет возмознни прпступить к осуцествлению эксперпиентального спутника с лодыии. В настоящее врены рассматриваем такой спутник пак пер-

спективу, п поэтому програмиа первото этапа, в известной пере, долнна отроиться с учетом этой работн.

Под экспериментальним спутником понимаетоя спутния, рассчитанний на пребываение І-2 человек на кругово号 орбите в продолмение нескольких месяцев. Выход на круговую орбиту должен производигься по методу, указанному выше, т.е. с дощианием топлива в апогее переходного эллипеа. Экспериментальннй спутник должен бнть снабженустрої ствами длл безонасного возврамения лодей на Земдо. Задачами этого спутника являююся изучение условй длительного существования лодей на нем, экспериментальное решение ряда проблем спутника - станции, научнне псследования III T. 2 .

Не останавливаясъ на проблемах, репение которне необходино для реализации экспериментального спутника, заметим, что значительная часть их будет решена в первом этапе, т.е. при осуществлении простейпего спутника й освоении человеком полетов на изделиях P, а остальные, как показали предварителнне щсследования, могут бнтъ решенн на базе соврепенной техники. Таким образом создание экспериментального спутника с лодьми возиожно на базе изделий P.
2. Спудник-стандия. Задача создания спутника-станциии мощет бнгъ поставлена реально толико после осуцествления экспериментального спутника с лодьми й освоения полетов й жизни на нем, вклочая подэем, опуок и управление спутником.

Так как в настоящее вреия не может бнть указан рациональннй способ подэена пзгоповленноло на Зеиле спу нина-станции на какур-либо орбиту, то остается толыко метод построения такой станции непосредственно на выбранной орбите. Поэтому важнейшей проблемой становится осупествление встречи маллх спутников, типа этспермиентального, о которои шла речь выше, медду собой в пространстве вне Земли на орбите, выбранной для

спутника -отанции. Іоль скоро эта пробдема будет решена, посг-
 ми в настолщем докладе развивать не буден.
3. Проблема достижения Дуне. सратко остановммоя на проблеме достиқения Луни в ближайшен будущем, Задачу поставим так: каким долино бнгь изделие P, чтобн в конце активного участка бнла получена скорость II, $2 \mathrm{~m} / \mathrm{ceк}$, достаточная для достижения орбитн Дуны, с уоловием или падения на нее или облета вокруг нее с возмоднни возврамением на Землр. В последнем случае посалва на Землосоверпаетоя искличительно за счет торможения в атиосфере. Полезный груз примем в $\mathrm{I}, 5 \mathrm{TH}$.

Проделанные расчети показмваря, что если подқем такого пзделия P будат совершаться с поверхно сти Земли, то оно долкно бнгь составним типа "пакег", состоять из трех ступеней II, в случае приненения двигателей с уделной тягой в пустоте $3 I 0$, будег веспть $\simeq 650 \mathrm{TH}$. Бсли удельная тята будет повишена до 400, то вес уленьшаегея до 250 тн. и изделие пожет бнть двухскупенчатын.

Зели zе подэем изделия P будет соверпатьея со спутни-ка-огапци, о которой говорилось выше, й на которой изделие P. долдно бигь собрано и обеспечено топливом, то ело вес, при уделынй тлге дмтателя в ЗIO, будет веето ~ 5 тн.

При взлете со спутикка-стапии, изделие P, предназначенное для посадки на Луиу іи возвращения на Зеили, будет тметь вес порядна 100 тн. /при удельной тяге 310 й том ze весе полезното труза/. Недпланетние полетн становнтея реальными п возможносгь их осуцествления подет значительно приблизиться.

3ARIDY\& H TE

Как уже указнвалось, пуми реализации первого этана работ, вкллочающето в себя проблему простейтего спутника, в настояцее вреия принцимально яснн, Такин образом мозно товориж о создании технического проекта простейшего опутника. В олучае, если работа в этои направлении будет начата немедленно, создание простейшего опутника может бить осуществлено в блиқаймее время.

पто же касается проблемы освоения человеком техники полетов на изделиях P, которая также долана битъ вклочена в первый этап, то она потет проводитьел на суцествуппих образдах изделий P. Проектнне работн могут бить начатн п проведенн приблияительно параллельно с работой по осуществленир спутника.

Научное значение простейшего опутиика Земли неоспоримо. Целй ряд отраслей науки будет заинтересован в проблеме создания такого епутнива.

Физика получит возможность более ллубокого изучения природн космическото пзлучения, напринер; вознодность продолмитель ного экспонирования плаетинох с дельр изучения напболее сильних компнент комииеских лучей, возмозность изучения космического излучения в отсутогвии атмосрерн, в завпониости оп радиации Солнца; возможность изучения космгческих лучей за длительное /порядка недель/ время, так в тени Земли, так й в лучах Солнца.

Кроме того, станет более доступной для исследования поротковолновая радиагия Солнца.

Станет возможной постановка ряда опитов по проверже теории относительности.

Физика атмосфूерн получит болышие возможности для изучения строения атиосмॉеры и, особенно, ее верхней части - ионосф̆ери. Следует, отметитъ, что изучение поносю̆ери с пимощъы спутника будет иметь большое значение для радиотехники, например, с точки зрения изучения распространения рядноволи в атиосюере.

Изучение атмосферних явлений с помощью опутника откроет новые возмозносяи перед метеоролотией, напринер, возмозность единовременного получешия различных данних е больших пространоя Земли.

Теоф̆изика сможет более полно изучить энергетический баланс Земли, а также ее трантационное и ларнитное поля.

Болиние перопектдвн огкрортея перед астрономией благодаря отсутогвию атиосб̆ерн й связанных с нер помех. Нагример, стан нет возмоднни наблддение и более полное изучение радиации Солнда, спектров звезд, в особенностй их ультрайполетовнх концов,атмосфуер планет, излучений мирового прострапотва й т.д.

Без сомнения, й в других облаотях науки могут бнть указаны проблемн, репение которнх будут уопешно продвинуто в результате создания спутника.

Необходиио очметить, ччо в настояцее время невозможно дать сколько-нибудь полннй перечень проблен, которые могут бнть решенн с помощьр спутиика, т.к. его создание вводит нас в соверщенио новур, непсследованнур область. Несомненно одвако, чго создание спутника откроет болыние перопективы для различных отраслей науки, и уже первые полети могут привести к ряду нових открнтий.

Научнме задачия спутника долвни быть конкретизировани Акадеиией Наук сССР в самои ближайтем будущеи. Академией Наук долгни бнть также намечени те научные прибори, которнии следует оборудовать спутник.

Укажем, что искусственни员 спутник Зеили может иметь й оборонное значение, причем последнее будет повышаться с постепеннни прогрессом техники построения таких машин и реализацией перспектив, о которнх кратко говорилось више.
/n Инженер-полковиик:-
/I.K. Tихонравов/

В подротовке материала длл данной затиски принимали участие: сотрудники нил- - М. М. Япунокии, I.D. Максммов, И. П. Базинов и сотрудники Отделения прикладной иатематики Мате-

26. ̄. .19547.

