Nº3–4 (60) 201

ВЕСТНИК ЭЛЕКТРОНИКИ журнал для инженеров и конструкторов

тема номера:

АКТИВНЫЕ КОМПОНЕНТЫ

технологии решения модули компоненты

Совершенная аудиообработка от Microsemi

Точность RTK для модуля НАВИА ML8089F

Передовые решения для освоения космоса

Безлицензионное радиационно-стойкое решение

Воздействие ТЗЧ 110 МэВ*см²/мг

Единый телефон: 8-800-333-63-50 info@ptelectronics.ru www.ptelectronics.ru

Офисы компании: Санкт-Петербург, Москва, Чебоксары, Нижний Новгород, Екатеринбург, Новосибирск, Ижевск, Таганрог, Пермь, Киев

Innovations & Technologies

ELECTRONICS

ПОСТРОЕНИЕ СИСТЕМЫ ТЕЛЕМЕТРИИ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ НА БАЗЕ БЕЗЛИЦЕНЗИОННЫХ РАДИАЦИОННО-СТОЙКИХ КОМПОНЕНТОВ STMICROELECTRONICS &

Традиционным назначением телеметрических систем (TMC) космических аппаратов является сбор информации датчиков и выдача этой информации в некотором структурированном виде потребителю — как правило, в бортовой радиокомплекс либо в бортовой комплекс управления. Информация может передаваться как в виде непрерывной последовательности кадров, так и в пакетном режиме. Для исключения возможных срывов выполнения задачи изделия структура проектируемых бортовых телеметрических систем должна обеспечивать парирование возможных неисправностей в телеметрируемой аппаратуре. И поэтому требования к обеспечению надежности функционирования таких систем достаточно высоки.

В ряде случаев бортовая аппаратура имеет в своем составе средства собственной диагностики и способна выдавать

телеметрическую информацию в виде непрерывных потоков или в виде информационных пакетов на радиокомплекс непосредственно либо на ТМС. При этом диагностическая информация может занимать как весь транслируемый трафик, так и быть всего лишь частью данных, передаваемых в ходе выполнения основной задачи. Однако большая часть бортовой аппаратуры и агрегатов, спроектированных в рамках общей архитектуры космического аппарата, не снабжена подобными узлами и не способна выполнять функции самотестирования. В таком случае для прямого либо косвенного контроля данных приборов используются различные типы дискретных датчиков, в том числе аналоговых генераторных и параметрических датчиков. Таким образом, в задачи ТМС входит опрос параметров подобного типа. И довольно часто только благодаря информации ТМС удается диагностировать возможные неисправности телеметрируемой аппаратуры.

ВЕСТНИК ЭЛЕКТРОНИКИ №3-4 (60), ноябрь, 2017

В случае решения задачи передачи и приема информации аналоговых сигналов перед разработчиками встает проблема организации аналогового тракта, в том числе цифро-аналогового и аналого-цифрового преобразования сигналов. При этом дополнительно приходится учитывать требования, предъявляемые к аппаратуре в части влияния внешних воздеи́ствующих факторов, в том числе к влиянию спецфакторов космического пространства. Дело в том, что под влиянием ионизирующего излучения происходят различные обратимые и необратимые эффекты в электронных узлах аппаратуры, приводящие к сбоям в работе, временным и постоянным отказам функционирования. Для аналоговых трактов, передача информации по которым заключается в корректной передаче формы полезных сигналов, влияние дестабилизирующих факторов гораздо более критично по сравнению с воздеи́ствием на цифровые узлы, транслирующие дискретные сигналы, восстановление информации которых не сопряжено со значительными проблемами.

Необходимо признать, что крупнейшие разработчики и производители ЭРИ соответствующего уровня качества и надежности сконцентрированы на территории США, что подразумевает наличие ряда административных барьеров, ограничивающих поставку радиационно-стойкой элементной базы в Россию и дружественные страны, из-за чего отечественные разработчики испытывают дополнительные трудности при проектировании бортовой космической аппаратуры. В данных условиях может быть полезен набор радиационно-стойких интегральных схем от европейской компании ST-Microelectronics, продукция которой свободна для ввоза на территорию России и при этом не только не уступает по функционалу и характеристикам аналогам от именитых американских производителей, но и в большинстве своем превосходит их.

Примером использования набора ИС ST-Microelectronics может служить упрощенная функциональная схема коммутатора температурных датчиков А1, подключенная на правах дискретного аналогового датчика к коммутатору А2 TMC, представленная на рисунке 1. Вспомогательные узлы не показаны.

Коммутатор А1 также выполняет в аналоговом виде компенсацию напряжения смещения, не несущего полезной информации, и последующее масштабирование сигнала до уровня, удобного для обработки потребителем. Конечно,

Рис. 1 Упрощенная функциональная схема ТМС на базе радиационно-стойких компонентов от ST-Microelectronics

в настоящее время подобные устройства теряют свою актуальность, поскольку современные средства позволяют производить математическую обработку сигналов цифровыми методами, однако данная схема может дать общее представление о возможности использования аналоговых ИС STMicroelectronics, в том числе и в качестве замены ЭРИ в разработках прошлых лет.

Под управлением ПЛИС2 коммутатора А2, передающего в устройство управления А1 номер опрашиваемого канала датчика, ПЛИС1 коммутатора А1 вырабатывает сигналы управления системой аналоговых коммутаторов SW1. При этом сигнал UBx требуемого датчика поступает на делитель R5/(R3+R5) и далее на операционный усилитель DA3 типа RHF43B.

Одновременно ПЛИС1 производит чтение из ПЗУ параметра смещения для соответствующего датчика и передает данное значение на ЦАП DA1 типа RHRDAC1612, преобразующий этот параметр в аналоговый сигнал, который в свою очередь усиливается схемой, реализованной на операционном усилителе DA2. Для формирования опорного напряжения ЦАП используется стабилитрон VD1 типа RHF100. Сигнал с выхода усилителя DA2 поступает на операционный усилитель DA3.

Схема, реализованная на операционном усилителе DA3 и резисторах R3…R6, выполняет функцию компенсации напряжения смещения $U_{\text{вых}} = (U_{\text{вх}} - U_{\text{ск}}) * K_{u}$, где $K_{u} = \text{R6/R4}$. Сигнал с выхода данного узла поступает на вход опорного напряжения ЦАП DA4 типа RHRDAC1612. При этом ПЛИС1 на вход данных ЦАП подает код масштабирования C_{scale} для

опрашиваемого датчика, таким образом напряжение сигнала на выходе ЦАП становится равным U=2*U_{vref}C_{scale}/2¹⁶. Данный сигнал поступает на усилитель, реализованный на DA6, с коэффициентом усиления, равным 1+R8/R7, и передается на аналоговый коммутатор А2.

ПЛИС2 коммутатора А2 вырабатывает сигнал управления аналоговым ключом SW2, таким образом сигнал коммутатора А1 поступает на буферный повторитель, реализованный на операционном усилителе DA7. С выхода повторителя сигнал через делитель поступает на АЦП DA8 типа RHF1201, преобразовывающий его в цифровой код, который передается в ПЛИС2 и записывается в O3У. При опросе данного датчика со стороны TMC данный код извлекается из O3У и передается узлу опроса.

В качестве стабилизатора напряжения в данной схеме используется линейный стабилизатор с регулируемым выходным напряжением DA6 типа RHFL6000A. Выходное напряжение стабилизатора равно U_{ст} = 1,248 V(R10+R9)/R10.

ИС, используемые в данной схеме:

RHRDAC1612 — радиационно-стойкий малошумящий 16-разрадный цифро-аналоговый преобразователь, спроектированный по архитектуре интерполирующий фильтр -> сигма-дельта модулятор второго порядка -> 4-битный ЦАП. Функциональная схема приведена на рисунке 2.

Прибор способен работать от внешнего задающего генератора в диапазоне частот от 2,4 МГц до 3,6 МГц либо использовать внутренний генератор с частотой 3 МГц, частота

дискретизации составляет 12 киловыборок/с, при этом потребляемая мощность не превышает 15 мВт. Доступен режим пониженного энергопотребления.

Данная ИС позволяет производить обмен данными с микропроцессором по интерфейсу SPI с уровнями напряжений от 1,8 В до 3,3 В. Также прибор снабжен узлом автокалибровки.

ЦАП RHRDAC1612 устои́чив к воздеи́ствию ионизирующего излучения до уровня 100 крад, также он не подвержен возникновению SEU- и SEL-эффектов вплоть до уровня воздействия ТЗЧ 120 МэВ*см²/мг. Основные технические характеристики RHRDAC1612 представлены в таблице 1.

Таблина 1	Осиленые	технические	vahavme	ристики	RHRL	AC	161	2
таолица т.	OCHOBHDIE	THEXHNAECKNE	<i>Xupukine</i>	рисники	NINL	JC.	101.	~

Наименование параметра	Значение параметра		
Разрядность, бит	16		
Напряжение питания аналоговых узлов, В	33,6		
Ток потребления по цепи аналогового пи- тания, мА, не более	4,7		
Напряжение питания цифровых узлов, В	33,6		
Напряжение питания входных/выходных цифровых каскадов, В	1,63,6		
Ток потребления по цепям цифрового питания, мА, не более	1		
Пропускная способность, кГц	3		
Тактовая частота, МГц	2,43,6		
Частота преобразования, кГц	9,614,5		
Максимальное выходное напряжение при U _{ref} =1,2 B, B	2,4		
Погрешность выходного напряжения при t=25°C, %, не более	1		
Интегральная нелинейность, дв. ед.	±4,5		
Дифференциальная нелинеи́ность, дв. ед.	±0,3		
Температурный диапазон, °C	-55+125		
Корпус	FLAT-24		

RHF1201 — радиационно-стойкий дифференциальный 12-разрядный АЦП с низким потреблением, оптимизированный для работы с частотой преобразования 50 Мегавыборок/с.

Прибор имеет конвейерную структуру обработки информации, а также цифровой узел коррекции результатов преобразования.

ИС снабжена внутренними узлами формирования опорных напряжении. Интерфеис обмена информациеи с управляющим устрои́ством — микропроцессорный 2,5 В либо 3,3 В.

АЦП RHF1201 устойчив к воздействию ионизирующего излучения до уровня 300 крад, также он не подвержен возникновению SEL-эффектов и отказоустойчив вплоть до уровня воздеи́ствия ТЗЧ 120 МэВ*см²/мг. Основные технические характеристики RHF1201 представлены в таблице 2.

Таблица 2. Основные технические характеристики RHF1201

Наименование параметра	Значение параметра
Разрядность, бит	12
Напряжение питания аналоговых узлов, В	2,32,7
Напряжение питания цифровых узлов, В	2,32,7
Напряжение питания входных/выходных цифровых каскадов, В	2,33,4
Потребляемая мощность при частоте пре- образования 50 Мвыборок/с, Вт, не более	0,1
Полный размах напряжения входного сиг- нала, В	2
Погрешность преобразования при t=25°C и частоте преобразования 5 Мвыборок/с, %, не более	±0,3
Интегральная нелинейность, дв. ед.	±1,7
Дифференциальная нелинеи́ность, дв. ед.	±0,5
Температурный диапазон, °C	-55+125
Корпус	SO48

RHF43B — радиационно-стойкий прецизионный биполярный операционный усилитель с rail-to-rail выходом.

ОУ устойчив к воздействию ионизирующего излучения до уровня 300 крад, не подвержен возникновению SELэффектов до уровня воздеи́ствия ТЗЧ 120 МэВ*см²/мг. Основные технические характеристики усилителя RHF43B представлены в таблице 3.

9

Таблица 3. Основные технические характеристики RHF43B

Наименование параметра	Значение параметра		
Напряжение питания, В	316		
Ток потребления, мА, не более	3		
Допустимый диапазон синфазных входных напряжений	В пределах диапазона напряжений питания		
Напряжение смещения нуля на входе, мВ	±0,5		
Коэффициент подавления синфазного сигнала, дБ, не менее	80		
Выходнои́ ток, мА, не менее	±10		
Скорость нарастания выходного сигнала, при R, = 1 кОм, C, = 100 пФ, t = 25°C, В/мкс, не менее	2		
Частота единичного усиления, при $R_{_{\rm H}}$ =1 кОм, $C_{_{\rm H}}$ = 100 пФ, t = 25°С, МГц, не менее	5		
Коэффициент гармоник, %	0,01		
Температурный диапазон, °С	-55+125		
Корпус	FLAT-8		

RHFL6000A — радиационно-стойкий регулируемый линейный стабилизатор напряжения положительной полярности с низким падением напряжения, имеющий встроенную защиту по температуре и току короткого замыкания, а также регулируемую по уровню схему ограничения тока нагрузки.

Стабилизатор RHFL6000А устойчив к воздействию ионизирующего излучения до уровня 300 крад, не подвержен возникновению SEL-эффектов до уровня воздействия T3Ч 120 МэВ*см²/мг. Основные технические характеристики стабилизатора RHFL6000A представлены в таблице 4.

Таблица 4. Основные технические характеристики RHFL6000A

Наименование параметра	Значение параметра
Входное напряжение, В	2,512
Ток нагрузки, А, не более	3
Падение напряжения на стабилизаторе при I" = 1 A, U _{вых} = 2,59 B, t = 25 °C, мB, не более	800
Ток потребления во включенном режиме при I_{μ} = 1 A, U $_{_{BX}}$ = 2,512 B, t = 25 °C, мA, не более	60
Температурныи́ диапазон, °С	-55+125
Корпус	FLAT-16P

RHF100 — радиационно-стойкий прецизионный стабилитрон с высокой устойчивостью к влиянию температуры, времени и поглощенной дозы излучения.

RHF100 устои́чив к воздеи́ствию ионизирующего излучения до уровня 300 крад, не подвержен возникновению SELэффектов до уровня воздеи́ствия ТЗЧ 120 МэВ*см²/мг. Основные технические характеристики стабилизатора RHF100 представлены в таблице 5.

Таблица 5.	Основные	технические	характе	ристики	RHF1	00
------------	----------	-------------	---------	---------	------	----

Наименование параметра	Значение параметра		
Напряжение стабилизации, В	1,2		
Погрешность напряжения стабилизации при I _{ст} = 100 мкА, %, не более	±0,15		
Диапазон токов в режиме стабилизации, мА	0,0412		
Температурный коэффициент напряжения, °C ⁻¹ , не более	15*10-6		
Нестабильность напряжения от времени эксплуатации при I _{ст} = 100 мкА, t _{раб} = 1000 ч, %, не более	0,02		
Температурный диапазон, °С	-55+125		
Корпус	FLAT-10		

Заключение

Таким образом, аналоговая часть системы телеметрии космического назначения может быть практически полностью спроектирована на радиационно-стойких компонентах компании STMicroelectronics. Описанные выше компоненты обладают превосходными характеристиками по накопленной дозе от 100 до 300 крад и не подвержены возникновению SEL-эффектов до уровня воздействия T3Ч 120 МэВ*см²/ мг. Кроме того, все компоненты доступны для ввоза на территорию РФ без каких-либо лицензионных ограничений, а для разработчиков доступны тестовые образцы.

